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CHAPTER I

INTRODUCTION

1.1 Statement of the Problem

The structural unit of speech composition is the speech sound called

the phoneme. Its variations are called allophones. It can be said also

that phonemes relate to the linguistic basis of a language. However,

phonemes are not "bricks," i.e., the human has been endowed with the

ability to communicate in a continuous mode. Because we speak in an

uninterrupted fashion in order to complete our thoughts, the phonemic

structure connects itself by transitional cues for the perception of cer-

tain phonemes [1]. It is this transitional information that is needed

for absolute discrimination of speech and speech-like sounds [2]. It is

the transitional information that is needed for efficient excitation of

a speech synthesizer.

To synthesize intelligible speech, the perceptual aspects of speech

sounds have to be used. In other words, the ability for humans to dis-

criminate and differentiate a speech sound with their over-learned senses

must be incorporated into the speech synthesis technique. The speech

synthesis must include perceptual enhancement, and the inclusion of

transitional information (that is, frequency shifts). Transitional

information is the loci of frequency determined by the place of

tSome of the words related to the science of the speech waveform are

defined in APPENDIX A.

I II lli " lll ' F~1
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articulation that connects the phonemes. Phonemes are the basic speech

sound element used to make a word. One can also say that a phoneme is an

idealized structural unit of language which serves to keep words apart.

It is an astonishing fact as to how the human brain stores rules to keep

track to one's language for communicating. The object of speech synthe-

sis is to come as close as possible to this occurrence.

The history of synthetic voice coding had its origination with H. W.

Dudly in 1939 [3] [4]. The Dudley speech reproduction model consists of

a filter representing the vocal tract resonance characteristics driven by

an artificially synthesized excitation signal. The filter and the excita-

tion signal parameters are updated periodically. To determine the filter

characteristics, Dudley used the Fourier spectrum of the speech as a

basis. The excitation signal cansists of a pulse train for voiced sounds

and random noise for unvoiced sounds. The model that Dudley has repre-

sented is essentially the basis of many methods today [5] [6] [7]. Some

of these ideas are discussed below.

A basic model of the speech waveform is to assume a linear quasi

time-invariant system which responds to a periodic or noiselike excita-

tion. This linear time invariant system represents the vocal tract. If

the vocal tract is assumed to be fixed, then the output of the system is

a convolution between the excitation and vocal tract transfer function

(see Figure 1).

Recently considerable interest has been given to methods of digital

analysis and synthesis of speech assuming the presented model. A method

that has proven to be efficient for encoding the speechwave is linear

prediction [6]. The linear predictive encoder was developed to improve

the channel vocoder voice quality and intelligibility [7]. The difference
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between the linear predictive coded (LPC) vocoder and the channel vocoder

is the filter. There are two types of LPC vocoders, a pitch-excited and

a residual-excited. The difference between the two is how the excitation

signal is characterized for the synthesis filter. In the pitch-excited

LPC vocoder, the model of the vocal tract, with glottal flow and radia-

tion, is represented by the predictor coefficients. These coefficients

are transmitted together with the information regarding the excitation of

the speech, i.e., pitch, voiced/unvoiced decision and the gain. Much

research has been done toward the pitch-excited LPC vocoder. Two methods

have been discovered, the autocorrelation [8] [9] and the covariance [6]

methods. The residual-excited methods can be characterized the same way.

However, instead of using pitch, voiced/unvoiced desicion and gain, the

residual is encoded and transmitted. The residual is the difference be-

tween the actual and predicted speech signals. This technique also car-

ries the name adaptive predictive coding (APC). The channel vocoder, on

the other hand, uses a set of narrowband filters whereas the linear pre-

dictor uses an all pole digital filter. The linear predictive filter

describes the frequency response of the vocal tract system by the pre-

dictor coefficients. Its function is to decompose the speech into two

waveforms. One waveform represents the parameters that are time-varying

such as predictor coefficients, partial correlation coefficients and

other parameters that represent the formant frequency characteristics.

The other waveform is the prediction residual. Figure 2 describes a

block diagram of the LPC analysis.

The prediction residual is the ideal signal for an excitation func-

tion for the linear predictive analysis and synthesis model because it

contains the actual information instead of the pseudo-model, a pulse
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train or random noise [10]. In addition, phasing information is embedded

in the prediction residual. Furthermore, since the analysis filter is

the inverse of the synthesis filter, the decomposed waveform can be re-

constructed to form the input speech waveform by updating the parameters

[7] [11]. The prediction residual also follows the actual speech excita-

tion model g(t) in Figure 1 [12]. The function, g(t), represents the

glottal pulse which is also called the glottal volume velocity at the

vocal cords or glottis. In order to ideally model the voice reproduction

system, it is necessary to use a system whose properties are similar

acoustically to the glottis and vocal tract. It is best to model the

excitation signal with an analogous function to the glottis waveform for

input to the vocal tract. It is well known that for nonnasal voiced

speech sounds, the transfer functions have no zeros [5]. For these par-

ticular sounds, the vocal tract filters can be approximated by an all

pole filter. It is also known that the shape and periodicity of the

glottis excitation are subject to large variations [12]. However, with

the linear predictive model the features of the glottal flow, the vocal

tract, and the radiation, which is the output from the mouth, are included

into a single recursive filter. To separate the glottal flow from the

vocal tract involves a deconvolution. Some authors have avoided this sep-

aration of the source function; however, the artificial excitation used by

them represents only a good approximation to the prediction residual for

unvoiced sounds. Moreover, for voiced sounds, the artificial excitation

could be improved. The prediction residual should be used for the excita-

tion function, because it contains the following characteristics:

1. It is repetitive at the pitch frequency.

2. It has basically a flat amplitude spectrum; however, it includes
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details that relate to the suprasegmentals of the individual and of the

spoken words.

3. It includes the noisiness of opening and closing of the glottal

mechanism indicating phase information.

4. It includes the fact that voiced fricatives and stops are a com-

bination of noise and a repetitive signal.

Noting the speech characteristics in the residual signal, several

authors have investigated the coding aspects of the prediction residual

[13-32]. However, the speech intelligibility aspects, such as Articula-

tion Index (Al) [29], have not been used in these. The Articulation Index

concept has been used effectively in the sub-band coding of speech [36].

The sub-band coding, based upon Al, allows for an efficient bit distribu-

tion in coding. This thesis combines all these ideas and presents an

efficient method of coding the prediction residual using the concepts of

sub-band coding. A literature survey related to these areas is presented

in the next section.

One important aspect of coding is bit rate. For certain narrow band

rates, the coding of the prediction residual is not feasible [13]. Also,

it has been shown that 9,600 bits/second is feasible for transmission of

residual and filter parameters, and is practical over voice grade lines

[35]. In the future, lower data rates have to be used for cost effec-

tiveness. At present, rates below 6,000 bits/second yield speech quality

of a synthetic nature. Rates between 6,000 bits/second and 16,000 bits/

second demonstrates good coammunication quality. Studies have shown and

present operating equipment demonstrate that a 16,000 bits/second trans-

mission rate and above yield toll telephone quality. The thrust of the

governmental community for designing voice switch networks has been

1 I
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recently toward 9,600 bits/second rate. At this rate, the communicators

can comprehend the language spoken; however, there is some drop-off in

speaker recognition but not as drastic as at rates closer to 6,000 bits/

second. With the advent of mircroprocessing systems more sophisticated

algorithms can be implemented with small monetary investments. This

thesis presents the coding and decoding of the residual signal using sub-

band coding at a data rate of 9,600 bits/second.

1.2 Review of the Literature

Predictive systems related to speech have evolved through the years.

A brief survey of these systems is presented below. In earlier studies

of predictive coding systems with applications to speech signals, the

linear predictors were limited to fixed coefficients in an interval [17].

In more recent studies, it was found that since the speech signal has non-

stationary properties, the linear predictor does not efficiently predict

the signal at each interval. In work by Atal and Schroeder [6], an adap-

tive predictive system took into account the quasi-periodicity of speech

signals. In addition to being the classic forerunner for adaptive pre-

dictive coding (APC) of speech signals, this is a more elaborate predictor

than the one with fixed coefficients which is suited for characteristics

of speech sounds. Basically, the residual signal along with the predictor

provides sufficient information for the receiver to regenerate the input.

In this, pitch is determined from the residual signal. Atal and Schroeder

[22] have examined predictive coding of speech signals recently. They

have shown that speech quality can be improved by masking quantizer noise

over the speech signal. Atal and Hanauer [5] described an efficient en-

coding of the speech wave by representing it in terms of time-varying



9

parameters related to a transfer function of the vocal tract and by model-

ing the excitation.

In work by Dunn [13], the linear predictive coded residual signal was

generated by a feed-forward linear predictive coding (LPC) analyzer and

encoded using delta modulation (DM). The signal was transmitted at a bit

rate of 9,600 bits/second. Gibson, Jones, and Melsa [14] have introduced

a method called sequential adaptive prediction which utilized differential

pulse code modulation (DPCM) with an adaptive quantizer and an adaptive

predictor using Kalman filtering. This work was improved upon by Cohn and

Melsa [15] using adaptive differential pulse code modulation (ADPCM) for

encoding the prediction residual. A method using the Kalman filter for

the adaptive predictive encoder was introduced by Goldberg and others

[16]. This system was real time APC that was implemented on a minicompu-

ter. An adaptive residual coding using an adaptive predictor, adaptive

quantizer, and a variable length coder was studied by Qureshi and Forney

[18]. In these studies, a class of speech digitization algorithms is

described for use at bit rates of 9,600 to 16,000 bits/second. These sys-

tems involve an adaptive predictor, an adaptive quantizer, and a variable

length coder. This is a practical version of a residual encoder previous-

ly studied by Melsa and others [14]. Most recently, the method of vari-

able length coding of the prediction residual was studied by Berouti and

Makhoul [19]. This system of APC uses a noise spectral shaping filter to

solve the granular noise quantization problem and an indefinite quantizer

to solve the overload quantizing problem.

A voice-excited predictive coder (VEPC) by Esteban and others [20]

uses a baseband excitation of the residual and splitband coding by signal

decimation/interpolation. Furthermore, quadrature mirror filters are
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implemented in order that the aliasing properties could be taken advan-

tage of in the synthesizer.

The most recent work by Cohn and Melsa [21] [23] involves the imple-

mentation of a speech coding algorithm for digital transmission of speech

at 9,600 bits/second using a sequential, adaptive linear predictive coder,

an adaptive source coder, and multipath tree-searching algorithm to gen-

erate quality speech. This is an extension of the previous work done on

a residual encoder which was an improved ADPCM system for speech digiti-

zation. Chang [24] has extended this work and incorporated a noise re-

sistant code for transmission.

In work by Magill and others [25], a feed-forward LPC analyzer was

used with an encoding method of Adaptive Delta Modulation (ADM) and an

experimental method of encoding the residual by DPCM. This is referred

to as a residual excited linear predictive (RELP) vocoder. It combines

the advantages of linear predictive coding and voice-excited vocoding.

Recently, Dankberg and Wong [26] have implemented a new version of

the RELP vocoder. Their results have included a development of a pitch

predicted ADPCM residual encoder and a harmonic generator. Viswanathan

and others [27] considered the use of voice-excited linear predictive

(VELP) and RELP coders for speech. They have studied in detail the var-

ious aspects of these coders and have attempted to maximize speech qual-

ity as a result. They also studied the advantages and disadvantages of

baseband residual transiission and baseband speech transmission.

In recent work, Kang [28] studied the development of a narrowband

voice digitizer that improves speech quality, intelligibility and relia-

bility. The principle of LPC is used in implementing the lattice filter

for the analysis and synthesis. Itakura and Saito [9] [30] have used

.......



the lattice method for LPC analysis of speech. The thrust has been for

improved quantization of partial correlation (PARCOR) coefficients.

Makhoul [31] has presented a class of stable and efficient lattice meth-

ods for linear prediction of speech. In this, an indepth study is made

on PARCOR coefficients. If the all pole function is stable, then the

lattice obtained from this is stable; furthermore, since the PARCOR co-

efficients are bounded, stability is guaranteed and an efficient quanti-

zation method can be used.

In work by Flanagan [32], it is shown that the residual approximates

the glottal waveform. In any excitation system, the closer one can

approximate the physical model, the better response one gets from the

system. Flanagan's work enhances this concept to use the residual wave-

form as the excitation to the speech synthesizer.

Rabiner and others [33] have studied the LPC error signal. The work

investigated the variation of the prediction error as a function of posi-

tion in an analysis frame within a single stationary speech segment. The

error signal has the frequency range of the actual speech.

The work of Goodman [34] found the analog signal can be divided into

several nonoverlapping frequency bands. Each band can be sampled and

quantized independently. The result is an improvement in encoding effi-

ciency over straight sampling and quantizing of signals that are spectrum

peaked. Crochiere and others [36] [37] have applied this to speech sig-

nals in the digital domain. This is referred to as sub-band coding (SBC).

This approach provides a means of controlling and reducing quantization

noise in the coding.

A pilot study of speech waveform coding techniques were studied by

Tribolet and others [38]. The study compared subjective ratings to the
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various quality (objective) measures for speech waveform coders. Tribo-

let and others examined four different speech waveform coder algorithms

for low-bit rate applications, and studied these relationships for over-

all objective and subjective ratings for quality. The algorithms were:

adaptive differential PCM with a fixed predictor (ADPCM-F), sub-band cod-

ing (SBC), ADPCM with a variable predictor (ADPCM-V) and adaptive trans-

form coding (ATC). The transmission rates studied were 24,000, 16,000,

and 9,600 bits/second. The objective measures used were a conventional

signal-to-noise ratio, frequency weighted signal-to-noise ratio, log

likelihood ratio, and an articulatory bandwidth measure. The results of

the study were that if complexity/cost was of no concern, then ATC is the

most attractive of the group coders. However, if complexity/cost was a

concern, then SBC is an attractive choice. ADPCM-F had the poorest qual-

ity for its complexity; ADPCM-V was the most costly for its quality. The

transform coding and the sub-band coding will be explained in detail in

Chapter II.

In the work by Barabell and Crochiere [39] a new design of the sub-

band coding has been implemented for low-bit rate coding of speech. This

study applied quadrature filters to SBC. This method has also employed

pitch prediction within the sub-bands. Crochiere [40] has implemented a

novel approach for pitch extraction in the SBC. The method uses digital

linear phase shifters based on a bandpass interpolation scheme to achieve

the non-integer delays necessary in the feedback loop for the pitch pre-

dictors. It uses the fractional sample delay in the pitch loop and per-

mits the processing of the pitch prediction in each sub-band to be

performed at the sub-band sampling rate which contributes to the effi-

ciency of the algorithm.

,.__ _~~~~~~~~~~~ ~.. ........ .... . . . .. . .. .I l -,, - , b
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Pitch detection algorithms that have been mentioned above have one

basic goal. That is, make a voiced or unvoiced decision and during cer-

tain periods of voiced sounds, estimate the pitch period.

There are three areas of categorization for pitch detectors. First,

there is a group that uses time-domain properties of speech signals.

These pitch detectors operate directly on the speech waveform in order to

estimate the pitch period. The measurements that are usually taken are

minimum and maximum amplitude, zero-crossing and autocorrelation measure-

ments. With these detectors, it is assumed the formant structure has been

minimized by preprocessing the speech. A second category for pitch detec-

tion algorithms uses frequency-domain properties of speech signals. A

periodic signal in the time-domain will consist of a series of impulses

in the frequency-domain located at the fundamental frequency and its har-

monics. Therefore, one can make measurements in the frequency domain to

determine the pitch period. The final group combines both time and fre-

quency-domain concepts of the speech signals in order to determine pitch

period. This is a technique that is used which flattens the signal with

frequency-domain techniques and subsequently uses autocorrelation mea-

sures to estimate the pitch period. These are called hybrid techniques.

Previous work of the pitch detection algorithms and related works that

have been published will be discussed.

There are several documented pitch extraction methods that have been

published recently. In earlier methods, analysis of the speech time wave-

form were attempted by visual inspection of spectrograms which involved

the manual determination of pitch [41]. At this time the authors noted

the requirement for an automatic scheme of some kind. Pinson [42] used

the method of Mathews, Miller, and David [41] to estimate a time-domain
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synchronous pitch which in turn was used to determine frequencies and

bandwidths of vowel formants.

Sondhi [43] introduced three methods for finding the pitch period.

The first method spectrum flattens the signal and corrects the phase to

synchronize harmonics. A second method by Sondhi also flattens the spec-

trum but adds an autocorrelation to determine pitch. The third method

center clips the speech signal and uses autocorrelation for determination

of pitch. Using the method by Sondhi, a real-time digital hardware pitch

detector was implemented by Dubnowski, Schafer, and Rabiner [44].

There are also methods that make use of the power spectrum in the

determination of the pitch. One such method is called cepstrum pitch

determination. The cepstrum is defined as the power spectrum of the log-

arithm of the power spectrum, or mathematically expressed, the cepstrum,

Q(T) [45] [46], is

NO = [f logF(w)l2 cos (wT) dw 2  (1.1)
0

where f(t) is the speech signal, w is the frequency in radians, and

F(W)= f0f(t) e-jWt dt (1.2)

More recently, using digital inverse filtering techniques, Markel

has innovated a method for estimating the fundamental frequency of voiced

speech using time-domain analysis. This method has been referred to as a

simplified inverse filter tracking (SIFT) algorithm [47]. The pitch per-

iod is estimated by an interpolation of the autocorrelation function in

the neighborhood of the peak of the autocorrelation function.
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Another recent algorithm that determines the fundamental frequency

of sampled speech is implemented by segmenting the signal into pitch per-

iods. This is done by identifying the beginning of each pitch period.

This algorithm is called the data reduction pitch detector by Miller [48].

To obtain the appropriate identity of the beginning of the pitch period,

the method detects the cycles of the waveform based on intervals between

major zero crossings. The rest of the algorithm determines principal

cycles, which correspond to true pitch periods.

In work presented by Gold [49], it is assumed that pitch extraction

could be obtained by a visual inspection of the speech wave and is the

best obtainable. The computer program contains essentially four sections.

First, a voiced/unvoiced decision is made and the two portions are sepa-

rated. Each voiced portion is labeled as relative maximum, then the peak

detector is compiled. The third decision is to determine the spacing;

this in turn determines which samples will be called pitch peaks. Finally,

a procedure is necessary to eliminate spurious peaks and add into the

speech missing pitch peaks. The program is implemented such that editing

can make the best pitch selection.

The work of Gold and Rabiner [50] using parallel processing for esti-

mating pitch is a modified version of Gold [49]. A series of measurements

are made to find the peaks and valleys of the signals. There are six

cases used to determine this. Each is followed to determine if the sample

will be an impulse or zero. The rules of this are:

1. An impulse equal to the peak of the signal occurs at the point of

each peak in time.

2. An impulse equal to the difference between the signal present

peak and the past peak amplitude occurs at the point of each peak in time.

.. . .... .. .. ... .. .. .. ' " " -... . " ': i i~n , i € ... ... _,,. . .. .. . ..... ., .. . .. _. - - .,,-. .. . .. ...T . . - N
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3. An impulse equal to the difference between the signal present peak

and the past peak amplitude occurs at the point of each peak in time. (If

the difference is negative, then it is set to zero.)

4. An impulse equal to the negative of the peak of the signal occurs

at each negative peak in time.

5. An impulse equal to the negative of the peak at each negative

peak plus the peak of the preceding negative peak occurs at each negative

peak in time.

6. An impulse equal to the negative of the peak at each negative

peak, plus the negative of the preceding local minimum occurs at each

negative peak. (If this difference is negative, then the impulse is set

to zero.)

From this technique six estimates are formed. These estimates are

combined with the two most recent estimates for each of the six pitch

detectors. The values are then compared within an acceptable tolerance;

the decision is made for the most occurrences. This value is declared

the pitch at that time. An unvoiced decision is made when there is an

inconsistency between the comparisons for the pitch period.

Another method by Atal [51] is based upon LPC. This detector ini-

tializes with a voiced/unvoiced decision. Upon being classified as

voiced, the speech is low-pass filtered and then decimated by five to one.

The method uses a 41-pole LPC analysis on 40 ms seconds of frame data to

generate the speech harmonics. Then, a Newton transformation is used to

spectrally flatten the speech. A peak picker determines the pitch period

at the five to one decimated rating. Then, the signal is interpolated and

a higher resolution is used to obtain the pitch period.
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The average magnitude difference function (AMDF) pitch extractor

[52] is a variation of autocorrelation analysis to determine the pitch

period of voiced speech sounds. This method takes advantage of the per-

iodicity of voiced speech. It calculates a difference function that at

multiples of the pitch period will dip sharply when the delayed speech

and original speech are compared. The AMDF function is implemented with

subtraction, addition, and absolute value operations, whereas autocorrel-

ation methods use addition and multiplication operations. For this rea-

son, the AMDF function is attractive for real-time operations.

Another real-time pitch extraction method, based on linear predic-

tive techniques, is presented by Maksym [53]. The method employs a non-

stationary error process from the adaptive predictive coder by Atal [5].

The algorithm in addition to pitch period extraction also detects voiced

speech. The basis of the method uses a predictive one-bit quantizer with

an adaptive algorithm for determining prediction coefficients. Since the

method operates on the short-term prediction of the speech waveform, the

presence of the glottal excitation can be detected.

A semiautomatic pitch detector (SAPD) [54] has been presented by

McGonegal, Rabiner, and Rosenberg. This method semiautomatically deter-

mines the pitch contour of an utterance. An autocorrelation of the speech

is generated. The cepstrun of the unfiltered speech is computed. These

displays are shown on a scope on a frame-by-frame basis. The computed

pitch period for each waveform is marked by and is displayed to the user.

With the incorporation of the three waveforms, an extremely accurate mea-

sure is found. The processing is lengthy for an utterance; however, ro-

bustness and accuracy of the results can be a trade-off for many appli-

cations.
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A recent method for estimating pitch period in the presence of noise

of voiced sounds is based on a maximum likelihood formulation [55]. This

scheme is designed to be resistant to white, Gaussian noise. A new sig-

nal is formed from the speech signal with a maximizing function to enhance

the peaks for short periods. The function is formed by an autocorrelation

of the speech. It provides accurate estimates of the pitch period and can

be used to determine formant structure. It is compared with the cepstrum

method to perform better under the white noise conditions.

An automatic pitch extraction method was developed by Markel [56]

which also determines formant frequency tracking. This method is similar

to the cepstral analysis. The technique uses two FFT's to obtain the

sequence from which the pitch is extracted. The difference between this

method and the cepstral method is the procedure for determining the

voiced/unvoiced decision.

An accurate method based on the prediction residual is the method by

Atal and Hanauer [5]. The speech is low-pass filtered and each sample is

raised to a third power to emphasize the high amplitudes of the speech

waveform. A pitch-synchronous correlation analysis is performed of the

cubed speech. A voiced/unvoiced decision is made in this technique. A

second method is based on a linear prediction representation of the speech

waveform. Each sample is predicted from the previous n samples, and

therefore the correlation is not good at the beginning of the pitch per-

iod. The error is large at the beginning. The basis of the technique is

to use peak picking for the pitch detection.

Another accurate method has been described by Itakura and Saito [57].

This method determines the prediciton error signal by the method of lat-

tice filter formulation. The pitch period is determined by computing
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autocorrelation coefficients of the residual. A set threshold compares

the autocorrelation for a voiced/unvoiced decision with the pitch period.

A two stage method was developed by Boll [58] to determine the pitch

period. The method is based on the Itakura [57] algorithm. It is built

by adding the initialization of each frame based on the preceeding frame

results. The portion of the autocorrelation function of the residual in

the range where a pitch pulse is expected and the basis of the a priori

information is computed in each frame. The savings in computation is

significant.

Two methods were developed by Barnwell and others [59]. These algor-

ithms are: 1) the multiband pitch period (MBPP) estimator, and 2) the

skip-sample recursive least squares pitch position estimator. The multi-

band pitch period estimator first filters the speech waveform into four

bands across the frequency regions where a fundamental is expected to

occur. The bandwidths of these filters are chosen so that only one of

the outputs will be expected to contain the fundamental. Zero-crossing

pitch detectors operate on the outputs of each of the filters. The in-

formation derived from the zero-crossing detectors is used as a basis for

logical operations to produce pitch period estimates. The skip sample

recursive least squares technique is based on a recursive least squares

linear predictive coder. The coder operates on a lower sampling rate

than a linear predictive coder and it uses fewer coefficients than the

predictive filter. This approach permits the original sampling time

resolution to be retained. The method produces a sharp residual signal

whose pitch pulses can be used to determine the period.

The future trend is towards efficient low-bit rate coding that en-

hances the perceptual quality and intelligibility of speech. The coding

QI
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of the residual signal is one way of arriving at the desired goal. This

thesis presents such an idea along with a novel approach to pitch extrac-

tion. The next section presents the organization of the thesis.

1.3 Organization of the Thesis

Chapter 11 presents the basic ideas associated with the concept of

the prediction residual. A discussion of the mechanism of speech produc-

tion as related to the makeup of speech articulation is presented in

speech science terms. A model of the vocal tract is presented in mathe-

matical terms and the residual is presented in an algorithm form. The

method of short-time analysis is presented. A new method for determining

pitch implementation is presented using the residual waveform as the

source function.

Chapter III presents some of the general ideas associated with cod-

ing of speech along with some applications. The method of transform cod-

ing (TC) is compared to the method of sub-band coding (SBC). The equiva-

lence of the two methods is shown under certain conditions. The Articu-

lation Index (AI) and the phoneme transitional information related to

speech intelligibility are discussed along with their incorporation into

the coding scheme to enhance the perception of speech. The results of

the distribution of energy from the prediction residual of the phonemes

are presented.

Chapter IV presents the design of the energy based sub-band coding

algorithm. The basic ideas associated with the sub-band coding are dis-

cussed as related to the proposed coding scheme. The adaptive quantiza-

tion is presented to explain the allocation of bits. The result on
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signal-to-noise ratio (SNR) performance measurements are presented. The

computation for coding the prediction residual is presented.

Chapter V presents a summary and suggestions for further study. The

appendixes give a sample of the related speech science definitions, com-

puter programs for coding the prediction residual, a brief review of the

concept of Articulation Index and sonagrams of speech data.

L.....



CHAPTER II

PREDICTION RESIDUAL AND THE PITCH EXTRACTION

2.1 Introduction

Recent work in the area of speech analysis and synthesis is based

upon a model that separates the glottal flow from the vocal tract. That

is, the speech production is represented by a convolution model where the

input corresponds to the glottal volume velocity and the vocal tract by a

filter. Recent models have assumed an all pole filter to represent the

vocal tract [5]. The filter coefficients are determined by using the

method of linear prediction. By using the inverse filter, the speech can

be deconvolved to obtain the prediction error or residual. The block di-

agram representing this is shown in Figure 3. The residual produces a

peak where the prediction is bad, representing pitch period designations.

As the prediction becomes more accurate, the residual appears as a noisy

signal.

Most synthesis models use a filter excited by either a train of

quasi-periodic pulses or a random noise source [60]. The periodic source

excites the filter for voiced sounds. The noise source excites the fil-

ter for unvoiced sounds. The prediction residual is applicable for

voiced or unvoiced sounds because the residual is an approximate signal

of the corresponding input sources that generate these sounds. The de-

tailed description of the prediction residual is discussed in Section 4

of this chapter.

22



23

S INVERSE
SPEECH FILTER RESIDUAL

Figure 3. Prediction Residual Formed by Speech Through an
Inverse Filter



"

24

The linear predictive techniques described so far have been used

successfully for time-domain speech analysis and synthesis [5] [30]. The

linear predictive coding (LPC) techniques have been used in communica-

tions in the past; however, it was applied to speech only recently [5]

[7]. The use of linear prediction in describing the transfer function of

the vocal tract avoids the complexity of Fourier analysis. The slowly

time varying aspects of speech can be taken into consideration by up-

dating the filter coefficients every so often.

Two significant contributions have been made by Weiner [61] [62] and

Shannon [63]. Weiner's work describes prediction and filtering of ran-

donm, time series data. Shannon's results describe the information con-

tent of a message, related to band-width and time requirements of that

message, related to band-width and time requirements of that message.

The background of this chapter uses Weiner's method as applied to sta-

tionary data. Shannon's results are implicitly used in the coding

scheme.

Section 2.2 describes the basis of human speech production. Section

2.3 discusses the vocal tract model as a discrete time invariant linear

filter. Section 2.4 describes a parallel between the glottal waveform

and the residual signal. Section 2.5 reviews linear prediction analysis.

Section 2.6 discusses short-time analysis. Section 2.7 describes the

implementation of operations for the calculation of the prediction resid-

ual. Section 2.8 presents a novel pitch extraction technique.

2.2 Mechanism of Speech Production

Man's system of communication is by speech. Speech is produced

through the human vocal system in a continuous fashion. However, speech
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signals are composed of a sequence of discrete sounds called phonemes.

Although phonemes are not bricks, they are the basic sounds that serve to

make a complete word in any language. The connection or arrangement of

these sounds is based on certain rules. It is the study of these rules

and the way these sounds fit together that is called linguistics. The

basic linguistic element is called a phoneme. Its distinguishable vari-

ations are called allophones [2].

Speech in humans is produced by a physical acoustic system consist-

ing of principally four parts: lungs, vocal tract, nasal tract and vocal

cords (see Figure 4). The lungs supply the volume of air necessary to

produce speech. The vocal tract and nasal tract act as filters to shape

the waveform. The velum, a small flap of skin, acts as a switch to close

the entrance to the nasal tract. When closed, it removes any effect the

nasal tract may have on the sound produced. The vocal cords, tongue,

teeth and palate are parts of the filter or constriction mechanism. An

elongated opening between the folds of the skin which make up the vocal

cords is called the glottis.

The vocal tract provides the column of air, which is set to vibra-

tion by the excitation of the glottis. In an average male, the vocal

tract is about 17 centimenters in length. The cross-sectional area which

is determined by the position of the tongue, lips, jaw and velum varies

from zero, i.e., complete closure, to approximately 20 square centimeters.

Speech sounds produced by the system can be separated into three

distinct classes according to their mode of excitation. The voiced

sounds are produced when air is permitted to escape in quasi-periodic

pulses by the vibratory actions of the vocal cords. This sets the acous-

tic system to vibrating at its natural frequencies. These resonant
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VOCAL SYSTEM (CROSS SECTIONAL VIEW)

1- LIPS 8-FRONT OF TONGUE

2- TEETH 9- BACK OF TONGUE

3- TEETH RIDGE 10- PHARYNX

4 - HARD PALATE 11- EPIGLOTTIS

5 - SOFT PALATE 12- POSITIONS OF
(VELUM) VOCAL CORDS

6 - UVULA 13- TIP OF TONGUE

7- BLADE OF TONGUE 14-GLOTTIS

Figure 4. Cross-Sectional View of the Human Tract
System
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frequencies are concentrations of energy and are known as formant fre-

quencies. These are useful in characterizing the vocal tract configura-

tion, as there is a one-to-one correspondence in the relationship of

vocal tract configuration and formant frequencies. The fricative or

unvoiced sounds are generated by forming a constriction at some point

along the vocal tract and forcing air through the constriction at a vel-

ocity high enough to produce turbulence. This can be identified as wide-

band noise exciting the vocal tract. For an unvoiced sound the vocal

cords are relaxed and partially open. The plosive sounds result from a

complete closure of the vocal tract and a sudden or abrupt release of the

closure.

The formants or natural resonances are numbered F1, F2, F39 ....

Typically, for speech analysis, only the first three or four are used.

Table I gives representative values of these for certain vowels. It has

been noted that all phonemes characterize some formant structure; how-

ever, it is most noted for voiced sounds [2]. It is indicative of the

first formant to be greater in frequency than the fundamental frequency

of the vocal tract. The fundamental frequency is the rate of vibration

of the vocal cords; whereas, the first formant represents the first con-

centration of energy of the vocal tract system excited at the fundamental

frequency. Typically, the fundamental frequency is around 120 Hertz for

men, 220 Hertz for women and 300 Hertz for children. The pitch period is

the reciprocal of fundamental frequency. The pitch period has a range

from three milliseconds to eight milliseconds for voiced sounds. For the

unvoiced sounds, most frequencies range above 4000 Hz and it has approxi-

mately a flat spectrum. All voiced sounds are characterized by voice on-

set time (VOT). For example, plosives are characterized by VOT, which is
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the delay from complete closure of the plosive to the beginning of voicing

[66]. The VOT ranges from 25 milliseconds to 300 milliseconds depending

on the phoneme.

Each phoneme has its own characterization depending on the language.

This characterization is associated with place of articulation and voic-

ing. In this thesis, discussed are the phonemes of the English language.

This is not to discard the pitch inflections in Chinese, whispered vowels

in Japanese or vocal clicks of South African Hottentots, but to restrict

to a basic area to all languages. This is established by the Interna-

tional Phonetic Association (IPA). Most linguists use about 35 basic

units, and six diphthongs or combination phonemes. The symbols and tele-

type representations of these are shown in Table II.

Phoneticians classify speech sounds by vowels and consonants, or

strictly speaking in the manner and their place of production. Each pho-

neme has certain characteristics and is identified from the distinctive

features of the speech sound. The distinctive features give a unique

identification of the phoneme. These are given below [68].

1. Vocalic/Nonvocalic

presence vs. absence of a sharply defined formant structure.

2. Consonant/Nonconsonant

low vs. high total energy.

3. Interrupted/Continuant

silence followed and/or preceded by spread of energy over a wide

frequency region (either as a burst or a rapid transition of

vowel formants) vs. absence of abrupt transition between sound

and the silence.

4. Nasal/Oral
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TABLE I I

REPRESENTATION OF IPA PHONEMES WITH EXAMPLES

Standard Teletype
IPA Representation Example

i IY beet

I IH bit

e EY gate

f EH gt

SEAE fat

a AA father

0AO lawn

0 OW lone

U UH full

u UW fool

-YER murder

aAX about

A All but

aI AY hide

aU AW how

:DI ~OY t

pP pack

b B back

t T time

d D dime

k K coat
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TABLE 11 (Continued)

Standard Teletype
IPA Representation Example

g G goat

f F fault

vV vault
eTH ether

DH either

s S sue

z z zoo
f SH leash

z ZHl leisure

h HHhow

m M sum
n N sun

n NX sumj
I L laugh
w W wear

j Y young

r R rate
tf CII chan
d JH jar

hw WH where

Source: Rabiner and Schafer, Digital Processing of Speech Signals, New
Jersey: Prentice-Hall, 1978, p. 43.
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spreading the available energy over wider vs. narrower frequency

regions by a reduction in the intensity of certain (primarily

the first) formants and introduction of additional (nasal) for-

mants.

5. Tense/Lax

higher vs. lower total energy in conjunction with a greater vs.

smaller spread of the energy in the spectrum and in time.

6. Compact/Diffuse

higher vs. lower concentration of energy in a relatively narrow,

central region of the spectrum accompanied by an increase vs. a

decrease of the total energy.

7. Grave/Acute

concentration of energy in the lower vs. upper frequencies of

the spectrum.

8. Flat/Plain

flat phonemes in contra-distinction to the corresponding plain

ones are characterized by a downward shift or weakening of some

of their upper frequency components.

9. Strident/Mellow

higher intensity noise vs. lower intensity noise.

A table for the distinctive features of the phonemes of English are

shown in Figure 5 £66]. As indicated above the features may be of two

types. The presence or absence of each feature is expressed as a plus

(+) or minus (-). For example, the vocalic category has vowels shown as

plus and consonants are shown as minus.
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2.3 Model of the Vocal Tract

The acoustic speech system was qualitatively described in the pre-

vious section. The acoustic tube model of the vocal tract filter can be

represented as a discrete time-invariant linear filter. The modeling

has been discussed in the literature [2] [7] [67]. The acoustic tube is

approximated by a number of sections each having a constant cross-sec-

tional area. The cross-sectional area is characterized by the reflection

coefficients. The reflection coefficient is the percentage of a wave re-

flected at an acoustic tube junction. The number of sections in the

acoustic tube model is related to the number of formants for a phoneme.

The formants of speech correspond to the poles of the vocal tract

transfer function [67]. As pointed out in the last section, only the

first three or four formants are used for speech analysis, and these fre-

quencies are below 5000 Hz. Generally, vocal tract resonances occur

about one per thousand Hertz [67]. Therefore, a bandwidth of 5 kHz is,

in general, sufficient for speech analysis and synthesis. Each phoneme

is set apart from the others by the frequency location of the formants.

The majority of phonemes can be represented by an all-pole model of

the vocal tract [5]. It is well known that for nonnasal voiced phonemes

the transfer function of the vocal tract has no zeros [69]. Nasal and

glide sounds include zeros in the transfer function. Zeros and poles

are necessary to approximate the nasal and glide sounds. However, it

has been shown that zeros in the vocal tract can be achieved by including

more poles [5].

In Figure 1, let the transfer function of the vocal tract be ex-

pressed by [7]
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V(z) p G (2.1)

Sa z

where G, the gain; (ai}, the filter coefficients, are a function of the

cross-sectional areas of the acoustic tube. The value of P, the order

of the system, is usually taken as twice the number of formants for anal-

ysis for each speech sound. Typical values for P range from 8 to 10.

The value of 10 has been used for lattice network representations of the

vocal tract.

It has been shown that given (2.1), a lossless tube model can be

found [5] [7]. Also, given an acoustic tube with all areas positive,

Equation (2.1) describes a stable system [7].

2.4 A Parallel Between Glottal Waveform

and the Residual Signal

In modern signal processing techniques, it is necessary to use as

much information as can be obtained about the structure of the signal.

This section discusses the characteristics of the residual signal, which

is the output of the linear prediction filter. It is the difference be-

tween the actual and predicted speech signals.

The residual signal used in this thesis is obtained by using the

autocorrelation method in the LPC algorithm. In doing this, the speech

is Hamming windowed, where the window function is

w(n) = 0.54 - 0.46 cos [ _ ] 0 < n < N-l

= 0 otherwise (2.2)

with N = 256. The computational details are discussed in Section 2.6.
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The prediction residual is the ideal signal for the excitation func-

tion for LPC analysis [28]. It contains the actual information, rather

than a pulse train or random noise as in the simplified linear prediction

models [101. The waveform that excites the vocal tract is the glottal

waveform, and the residual approximates this.

The characteristics of the prediction residual are as follows: (1)

it marks the pitch period, (2) it has basically a flat amplitude spec-

trum, (3) phasing information is embedded in the prediction residual, (4)

the amplitude spectrum includes details related to the suprasegmentals of

the individual and the spoken words, (5) the waveform includes the fact

that voiced fricatives and stops are a combination of noise and a repeti-

tive signal.

Figure 6 gives a comparison between a speech wave and the corre-

sponding prediction residual for a particular phoneme. The computational

aspects in obtaining these figures will be discussed later. The pitch

period is marked by large spikes in the residual signal. The residual

gives an excellent estimation of pitch since the glottal excitation is

clearly marked.

Figure 7 displays an unsmoothed spectrum of the residual signal.

The spectrum of the residual contains the formants also. The peaks of

the formants are flattened; however, there is evidence of the fundamental

and formant frequencies on the plot. The dashed line represents a smooth

spectrum. Even in this, it is seen that there is evidence of the funda-

mental and the formants.

The pitch and voicing for each human is unique. It can be shown by

spectrograms that individuals have unique voice prints. This uniqueness

is basic to the excitation signal rather than in the vocal tract filter.
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Therefore, the suprasegmentals, i.e., the intonation, dialect, melody

pattern, etc., will remain unique to individuals for voiced sounds.

The voiced fricative lends more benefit to this discussion than its

cognate, the unvoiced fricative. The unvoiced fricative is simply a

noisy speech waveform that produces only a noisy residual signal. The

fricative or stop is produced by forcing air through a constriction, such

as the teeth or lips. The corresponding sound results from the turbu-

lence and is of the noisy type. The waveform is then represented by

noise that can be shown to be an unvoiced excitation source. However,

the voiced fricative is a result of a constriction in the vocal tract

while the vocal cords are vibrating. The residual signal from these pho-

nemes produce a repetitive signal at the pitch period.

The artificial excitation function for voiced sounds result in

speech that sounds a bit unnatural. The use of the prediction residual

in coding methods would introduce naturalness in voicing. Ideally, the

excitation of the vocal tract filter model should approximate the exci-

tation of the human vocal tract. The prediction residual meets these

requirements.

2.5 Review of Linear Prediction Analysis

Linear prediction analysis uses a weighted sum of P successive

speech samples to predict the next speech sample. The weights are chosen

such that the mean-square prediction error is minimized. Let

Xn = aI  Xnl + a2  Xn 2  + ... ap xnP

P
xn = ai xn-i (2.3)Xn i~ Xn-
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where xn represents the speech sample sequence and a. is a set of pre-

dictive coefficients. In this application, the method of least squares

is used. Assuming a stationary linear system [5] with time-invariant

statistics, zero mean, let xf(n) represent the best estimate, in the

least mean-square sense, of xn using the ai, i = 1, ..., P coefficients

and let xb(n) be the best backward prediction of xn using the bi, i

1, ..., P coefficients. Then

P
xf(n) = E a i Xni (2.4a)i=1

P
xb(n-P-l) = S b i xni (2.4b)

Let ef(n) and eb(n) be the forward and backward prediction errors

defined by

ef(n) x n - xf(n)

P
Z a- x n-i (2.5a)

i=O

eb(n-P-l) = n-p - b(n-P-l)

P+l
- E bi  x . (2.5b)

i=l n-i

where it is assumed that ao = -1 and bp+ l = -1. Figure 8 gives the im-

plementation of (2.5)

Since stationarity is assumed, it follows that the errors can be

minimized by

E [-2 (ef(n))2 J: 0 j = 1, ... , P (2.6a)
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ef (n)

a~)1  Z-,a

Xn-I~ ~ Xn- -n- p -)I

Figure 8. Implemtentation for Generation of Forward and
Backward Prediction Errors
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E [- -- (e (n-P-1D2 j =1.., P (.b

These reduce to

P
z a. E[x xn. j  = E[x Xn.] j 1, ... , P (2.7)
i=O-1f J n f-J

P
E bi E[xnTi. x nj] E[x np l Xn] j = 1, ... , P (2.8)
i=O

By defining

E[Xn-i Xn-j Ri-j (2.9)

Equations (2.7) and (2.8) can be expressed by

P
x R. a. R j 1, ... I P (2.10a)

P
SP.bi  j = 1, P (2.10b)i=1  - p+ - "

where RiP Rj. i has been used. It is clear that (2.10a) and similarly

(2.10b) can be written in a matrix form, wherein the coefficient matrix

is a symmetric Toeplitz matrix [71]. Furthermore,

bi = ap+l1 i  i = 1, ... , P (2.11)

which can be seen by defining

j=P+I-t

i P+1-k

in (2.10a). That is,

- ~ ~
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R k- ap+l-k RP19
k=P P1S

which can be rewritten as

P
SR. ap-1j P~- + j = 1, ,P (2.12)

Comparing (2.12) with (2.10), the relation in (2.11) can be seen The for-

ward prediction error

p p
E[e,.2(n)] L[( x - r: a.i x.n)(xn E a.i x -)

1 ~ j~1

SE[Xn 2 - 2 E: a.i x nx .1i + E[ E a. E a.i x .- x -n nn- j-1 i ii -i n,

p
= fxn i ' E[ i x n xn-i

p
a - k a. - E P(2.13)

where (2/;.a) has been us~ed to obtain (2.13).

';he cross-correlation between the forward and backward prediction

errors is derived in the following. Let

C P+l Efe f(n) e b(n-P-1)]

= E[x(n) x(n-P-1)] - E[ E a P+1-j x n x ]-
j=1 -

-[ E a. Xni xnPi] + E[ a P+l-j ra.i x .- x -
1 j ~ l 1f-1 f-
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P
R P~ a R PI-i(2.14)

where again (2.7a) has been used to obtain (2.14).

It is clear that (2.13) and (2.14) correspond to P coefficients. In

the following, a recursive method will be used wherein the coefficients

a.i will be updated. For this reason, let

E R 0(2.15)

Fk R0 a k) R. k 1, ... , p (2.16)

k~ d (k l k =0, 1, ... , P-1 (2.17)

where a.(k are determined from (2.10a) by using
1

k (k)
xR. .- a. R. 1, ... I k (2.18)

(k).Durbin's method [72] [73] can now be used to solve for a.i in

(2.18). The corresponding equations are

L R 0(2.19)

C.

j+l 
E

(j+l)

jP~l a ~ + k-i i = 1, 2, .. ,j (2.20)

E. = . 1 - k~

E+ E3 1 k

_________
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The predictive coefficients are obtained from

a a(j+l) i = 1, 2, ... , P
1 1

Interestingly, the prediction residual E. in (2.20) is readily avail-

able in the algorithm for the predictor of order j. The coefficients k.

generated in (2.20) are usually referred as PARCOR coefficients. These

have some interesting characteristics [9] [28].

1. IkjI 1 

2. Since Ikjl is unity bounded, a set quantization levels can be

determined.

3. The PARCOR coefficients are the result of the orthogonalization

of the auto-correcation matrix.

In order to show the application of this system, the transfer func-

tion and the algorithm to acquire the prediction residual is derived

below.

The transforms of e f(n) and eb(n-P-l) in (2.5) can be expressed in

terms of

P

Ef(z) - ai z X(z) (2.21a)
i=O

-(P+l) P+l -i
z Eb(z) = - E biz X(z) (2.21b)

i=l

where Ef(z), Eb(z) and X(z) are the transforms of ef(n), eb(n) and x(n),

respectively. Note that a and bp+ 1 in (2.21) are each equal to -1. For

simplicity, let

P
A p(z) 1 - E a. z i(2.22a)

•
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(P+l) P
B (Z) : z - £ bi z (2.22b)
p1=1

with these, (2.21) can be written as

Ef(z) = Ap (z) X(z) (2.23a)

P+l

Eb(z) = z B p(Z) X(z) (2.23b)

It is clear that (2.22) was implemented in Figure 8 using the direct

form. Next, the lattice network implementation of (2.22) is discussed

below. In order to do this, recall the relation bi = ap+l i given in

(2.11). With the relation, (2.21b) can be written as

B (z) -(P+l) P -iBp(Z z a p+l- i z

z- E a.(P+ I )  - -( a. z (2.24)

= z- (P+l) Ap (Z- ) (2.25)

From this it follows that

Ap(Z) = z-(P+l) Bp(Z -I) (2.26)

Equations (2.20), (2.25) and (2.26) will now be used to derive the

lattice implementation. To develop the recursive equation for the lattice

formulation, some of the above equations have to be written in a recursive

manner. It is clear that (2.22) can be rewritten in the form

j+l (j+l) -i
Aj(z) O a1  z j 0 0, 1, ... , P-1 (2.27a)

I=
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(j+2) (0+1) -i

Bj+l(Z) b i z j 0, 1, ... , P-i (2.27b)
i=1

where the superscripts on ai and bi are included to denote that (j+l)th

order is implemented rather than a Pth order. Also

a -
j + l ) = -1 (2.28)

b(J+l)-
j+2 = -1 (2.29)

have been used. The remaining a.j+l) can be expressed in terms of a.
)

1 1

using (2.20); b0 +l ) are related to aPj+l) by [see (2.4)]
1 1

bJ+l) = aJ + )  (2.30)
1 j+l-i

Using (2.20), (2.29) and (2.30) in (2.27a)

j+l 0) -i
Aj~l(Z) : 1 - S (as j )  k a~ j  ) z

i=l - kj+l j+l-i

(j+l) . ) -iA Aj(z) kj+1 E=1

A.(z) - k B.(z) (2.31)

Using (2.24)

j+l(z) = z - (j + ) -jk 1 (z ) (2.32)

Equation (2.31) can be rewritten as

Aj+l(Z-1) A a l )  kj+1 Bj(z - 1 '2.33)

Substituting (2.32) in (2.33) and simplifying
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Bj+l(z) = z- [Bj(z) - kj+ 1 A (z)] (2.34)

Equations (2.31) and (2.34) define the algorithm. The implementa-

tion of these is shown in Figure 9, where the generation of kj+ 1 is also

included. The detailed structure of the optimum inverse filter as an

analysis model is shown in Figure 10a. The corresponding synthesis model

is shown in Figure lOb. The output of the synthesis filter is the input

speech signal. From the analysis section, transform of the prediction

residual is Ap (z).

2.6 Short-Time Analysis

The concept of short-time Fourier analysis [76] [77] is fundamental

for coding the residual signal. For a quasi-periodic signal such as

speech, the short-time or time-dependent Fourier analysis allows for a

detailed study.

The speech signal, x(m), m = 0, 1, ..., L-l, from Equation (2.3) is

segmented into r sections such that short-time spectral analysis can be

used. It is assumed that L = rN, where N corresponds to the number of

samples in each section. This assumes the use of the formula

E w(nD-m) = 1 (2.35)

where w(m) corresponds to a band limited function to a frequency of 1/2D,

and 1) is the period (in samples) between adjacent samples of the short-

time transform of the signal [77]. In all practical cases, w(m) is a time

limited signal and, therefore, its spectrum cannot be band limited. The

effects of this non-band limited case are discussed in a recent paper

[931. It has been shown that the aliasing errors are small and can be
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neglected if D is properly chosen. For a Hamming window, D = (N/4) [77].

In addition to the aliasing errors, end effect errors have to be consid-

ered also [94]. This is necessary since L if finite. The LPC analysis

is applied to the windiwed signal resulting in the windowed residual

signal. The overlap-add of this signal is the residual signal, which has

error identified earlier.

The short-time Fourier transform of the residual signal ef(m) can be

defined as [67]

J k j w -J nk
Xn(e ) = [ef(m) w(nD-m)] e (2.36)

1n1= -

where wk = (2 k/N), k 0, 1, ... N-l, and w(m) corresponds to a window.

For a particular value of n, Equation (2.36) can be implemented using

FFT. This is used in this thesis. A brief review of this is presented

below.

Let

en (in) ef(nD+n) w(-m) -- < m (2.37)

Using this in (2.36),

Jwk J~kin -Jkn (.8
Xn(e en(m) e e (2.38)

Further, let m = Nr+q, - r w, 0 • q _ N-1. With these,

jw k N-1 -JU(,k(Nr+q) _ kn
X n(e ) I: [: en (Nr+q) e ] e (2.39)

r=- q=0

JwkNr
Noting that e = 1,
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jwk N-i -jk q  jWk n

Xn(e k) = E [ : e n(Nr+q)] e e (2.40)
q=O r=--

I For simplicity, let

Un(q)= e en(Nr+q) 0 1 q < N-I (2.41)

Note that u n(q) is periodic with period N. Now Equation (2.40) can be

written, and is

Jk - j(11k n  N-1 jW k q

Xn (e - e [ u n (q) e (2.42)
q=O

Observe that X n (e ) is represented as e times the DFT of the se-

quence un (q). Therefore, (2.42) can be written as

j(Akn jU)k N-i -jWkq
e Xn(e ) = un ((m-nD) )N e (2.43)

q=O

Equation (2.42) represents the OFT form, where (('))N corresponds to the

modulo N.

The following procedure can be used to compute (2.43).

1. The windowed sequence, en(m), can be computed from (2.37). The

sequence cen then be divided into r sections of N samples each, where in

this thesis, L = 4096, N = 256, D = 64, and r = 16.

2. The r-point DFT of un((m-nD))N can be computed to obtain (2.43)

using FFT.

The above procedure is given here for generality. Due to the limi-

tation of the disc space and to reduce computational time, a slightly

different procedure is used in computing the spectral analysis. The

residual signal is rectangular windowed to 256 points, spectrum analyzed
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and then averaged. This is used only for phonemes discussed in the the-

sis. No overlapping was used. The errors associated with this method

are quantified in previously mentioned references [93] [94].

2.7 Implementation of Operations for the

Calculation of the Prediction Residual

In this section, the formulation of the prediction residual from the

speech input is presented. The implementation of the operations to cal-

culate the prediction residual represents the analysis model for LPC. The

analysis model consists of the speech as the input, the vocal tract model,

the correlation coefficients and the residual as the output.

The analog speech signal is band limited to 3600 Hertz using a second

order Butterworth filter. This signal is digitized at the rate of 8000

samples/second. The algorithm for digitization is named DIGITIZ and the

computer program is included in Appendix B.

The results in the last section are used to obtain the windowed dig-

itized data. This allows to process the speech in short segments. The

underlying assumption for most speech processing schemes is that the prop-

erties of the speech signal change relatively slowly with time [67]. This

assumption leads to short-time methods which isolate the signal during the

segment of windowing. The window is a 256-point Hamming window and is

overlapped at 64-point intervals. The windowing is computed by program

WINDOW in Appendix B.

The windowed signdl is passed to program AUTO [7]. This program uses

the autocorrelation method for solving the matrix equation (2.10) for the

predictor coefficients [61]. The other matrix values solved for are the

J - -..+ T ."--....... . . . ... . . . s, 2 ',? 
.

I -
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reflection coefficients or PARCOR coefficients. These values are passed

for use in the lattice formulation.

The lattice method represents a recursive algorithm for a solution

of the prediction residual. This method guarantees stability. Note that

the PARCOR coefficients are bounded. The program to calculate the resid-

ual by the lattice formulation is INVERS and is included in Appendix B.

Figure 11 illustrates a block diagram showing the sequence of opera-

tions related to the calculation of the prediction residual, ef(n).

2.8 A Novel Approach to Pitch Extraction

2.8.1 Types of Problems Associated with Pitch

Extraction

The pitch extractor is of prime importance in most speech processing

systems, as the pitch is one of the basic parameters in speech analysis

and synthesis studies. In low-bit rate systems, it is an essential com-

ponent [2] [7]. Speech with a constant fundamental frequency is perceived

as a monotone or of a synthetic nature; variable pitch lends to speech a

melody. An accurate pitch extractor is a challenging area of speech pro-

cessing.

The difficulty in accurately determining pitch is due primarily to

the time varying aspects of the glottal excitation. Since the model of

the vocal tract assumes quasi-periodic changes occurring along the acous-

tic tube, the glottal response is not predicted accurately. This innac-

curacy is due to the nonuniform train of periodic pulses that occur with

the golttal waveform. The simple model of the vocal system excitation,

i.e., periodic uniform pulses or Gaussian noise, eases the measurement of



55

Ln

cr -J

.0

t 

CD

0

C:)

4+.-
0

a)

(U
V)

7N.~

S)

a)



56

of the period of the pitch. However, when the pitch and the waveform are

changing within a period which occurs with frequency shifts, difficulty

arises.

The second problem associated with the measurement of pitch is due

to the nonseparability of the vocal tract model from the glottal excita-

tion. That is, the separation of the formants and the fundamental fre-

quency may not be possible and therefore the detection of the pitch

period is difficult. This interaction can be seen most often during

transitional regions of formants when the articulatory elements are

changing.

The third problem is the detection of the beginning and ending of

the pitch period. Part of this problem occurs in the definition of be-

ginning and ending of the pitch period. In examining the speech wave-

form, it is necessary to always be consistent with the method because

different definitions will often lead to different results. This is seen

in Figure 12. In Figure 12, one can detect the period of zero crossings

before the maximum peaks or detect the period between the maximums. How-

ever, the two methods do not always give the same answers. The discrep-

ancy between the two is due to the slowly time-varying properties of

glottal excitation.

The fourth problem that arises is the decision to ascertain which

segment of speech is voiced or unvoiced. In particular, some algorithms

have problems distinguishing between low-level speech and unvoiced speech.

In transitional analysis, it is difficult to pinpoint the difference

between the two.

In addition to the above problems, the pitch detection is hindered

further when the signal is a transmitted speech signal. During the
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transmission of a speech signal over a telephone line, there are degrada-

tions that occur that can change the signal to make pitch detection dif-

ficult. These include: 1) phase distortion, 2) amplitude modulation of

the signal, 3) crosstalk between messages, 4) clipping of high-level

sounds. Furthermore, as the signal travels through the telephone lines,

the lines act as a bandpass filter with approximate band edges f1 = 200

Hertz and f2 = 3200 Hertz. The fundamental frequency is usually less

than 200 Hertz and therefore is removed by the bandpass action of the

line. The pitch must be regenerated by using harmonics.

The next section discusses advantages and disadvantages associated

with the use of the prediction residual for pitch extraction.

2.8.2 Advantages and Disadvantages for Using

the Prediction Residual as a Source for Pitch

Extraction

The prediction residual solves the problem of vocal tract excitation.

Earlier, it is stated that there is inaccuracy in determining glottal re-

sponse when using the simple model for excitation. When using the two-

source model fo, the vocal system excitation, i.e., quasi-periodic pulses

and random noise, a simple algorithm can be used for extraction of pitch.

The residual can be used as a single source as an approximation to the

glottal excitation, and, therefore, a simple method can be used to employ

the residual to extract pitch.

It is well known that the residual represents the deconvolution of

the speech from the vocal tract [7]. For each vocal tract configuration,

a different set of formants and a variation in harmonics of the fundamen-

tal frequency in the spectrum is acquired. The pitch markings are

-I-* ~
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determined by residual spikes in the time-domain. This can be used to

extract the pitch accurately.

The advantage of an accurate estimation of pitch will aid to the

perception of speech. Any enhancement to perception is important to any

analysis-synthesis speech system. The discussion which follows includes

other reasons for using the prediction residual as a source for pitch

extraction.

Referring to Figure 12, it is shown where errors can occur when the

speech signal is used for pitch extraction. Figure 13 shows the residual,

over 256 samples, characterized by spikes which represent the pitch per-

iod. It can be seen that it is not necessary to account for the zero

crossings or maximums. It is simply a matter of tracking absolute maxi-

mums within the range of the established pitch period. It has been shown

that if the interval of analysis is small enough the residual can be used

to extract pitch accurately [28]. Future transmission rates will require

a system that can do an acceptable performance for extracting pitch.

An application for using the residual signal for pitch extraction is

with embedded coding. The advantage with the residual signal is that an

absolute pitch can be determined in a frame. At higher transmission

rates, the coding of the residual can be accomplished more efficiently.

Therefore, a pitch extraction method can be employed easily. However,

it is not feasible to transmit the residual with low transmission rates;

consequently, the higher rates must extract the pitch and transfer this

to the lower rates. Since the residual demonstrates a very accurate

representation of the pitch, the frame-by-frame analysis of the pitch

from the prediction residual would enhance pitch in an embedded coding

scheme.
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However, a disadvantage associated with the residual may occur in a

high noise environment. It has been shown earlier that the residual is a

combination of periodic and noisy signals. In a high noise environment,

the noise may overcome the residual signal. If the noise has amplitude

in the range of pitch markings, the signal would require enhancement to

extract pitch adequately. On the other hand, low noise contributes to

the flatness of the spectrum of the signal and enhances pitch extraction.

Several advantages and disadvantages have been discussed. It can be

readily seen that the residual is an ideal signal for extraction of the

pitch. The next section discusses the implementation of the pitch extrac-

tor.

2.8.3 A Novel Pitch Extractor

The last few sections have described the prediction residual as the

result from the linear prediction analysis. It has been shown that the

prediction residual contains much information needed for extracting pitch.

It is a simple problem to pick appropriate peaks to extract the pitch.

It is this problem of pitch extraction that has interested many authors

recently.

Examining Figure 13, a repetitive waveform is seen at the period

called the pitch period. Note that the waveform has a noisiness which

implies a flat amplitude spectrum. It should be noted that for voiced

sounds there are other peaks that are also repetitive. These are evi-

dence of the formant frequencies. They are somewhat dampened; however,

this is to be expected since the linear predictive filter has the charac-

teristic of spectrally flattening the signal.
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It is well known for

x(t) = A cos (2f o ) (2.44)

where A is the constant maximum amplitude of the signal, and f0 is the

fundamental frequency, the spectrum is

A A
X(f) y 6(f-fo) + - 6(f+f ) (2.45)

It can be said that the speech waveform is a combination of sinusoids of

the type given in (2.44) summed together in a quasi-periodic fashion.

The residual signal, ef(n), can be described in a similar fashion.

Therefore, it follows that the spectrum of ef(n) has impulses at the fun-

damental and its harmonics identified here by f0, f15 ... 5 fn" The maxi-

mum amplitude is centered at f0, the fundamental frequency [75]. The

higher frequencies are all harmonics, or multiples of f o An a priori

estimate of f0 for a speech sound can be found using the residual as in-

put. If the spectrum is available, then the frequency of the maximum

amplitude determines an estimate of f 0 This estimate is found to be

relatively accurate for speech and the prediction residual. In the fol-

lowing, a procedure for extracting the fundamental is given.

The initial step is square the residual. This has a dual benefit

in addition to making all calculations positive. First, it makes large

quantities larger and second, any small or noise-like quantities are made

smaller. The new data corresponding to the set of squared samples are

placed in frames of 256 samples each.

Following the initial step, the original sample rate is used to

determine the time difference between maximums. It is assumed that the

maximums mark the beginning of a new pitch period as set by a threshold.
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The threshold is used to select the next maximum. The data set is passed

through a peak picker. The peak picker uses the threshold to determine

the next peak (maximum). The time between the two peaks is calculated by

a differencer function. The system is ready to set a pitch value from

the time between the two peaks.

At this point, the a priori estimate of the pitch and the pitch

value from the differences are averaged. An error check is made for

erroneous pitch values. The error check compares a range of pitch from

a low to a high value. Should the averaged value be less or more than a

set threshold, an update is sent to recalculate the last averaged pitch

in the frame. The process is continued until the end of the frame where

the pitch is set. The procedure for estimating pitch is shown in Figure

14. The next section discusses the results in using the pitch extractor.

2.8.4 Pitch Extraction Results

The PITCH program was applied to 39 phonemes, including 16 vowels

and diphthongs and 23 consonants. Each sound was held from one-quarter

second to one second by a male speaker at normal intensity. Recordings

were made on a SONY Model TC-1O6A tape recorder under anechoic conditions.

The sounds were low-pass-filtered by a Butterworth filter with a cutoff

frequency of 3600 Hertz and samples at 8000 Hertz with nine quantization

bits and one sign bit. The computer system quantization level setting

was ±10 volts. This gave a quantization level of 20 millivolts. The

digitized sound was sampled for 1.5 seconds using 12000 data points for

storage. With a limited computer system memory, the beginning of the

sound was found and 4096 points were saved. The sound was stored for

later use and labeled with an appropriate name. Due to the processing
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of the INTERDATA 70 computer system, all processing in program PITCH is

done in 256-point blocks.

The unified rek'irsive solution to solve Equation (2.10a) is by pro-

gram AUTO [7]. The efficient resursive solution was discussed in an

earlier section. The program INVERS processes the data. The residual

data is stored for use in the program FFTMGR. The computation of the

spectrum is performed in this program. Spectral values are stored for

use in PITCH.

Samples can be plotted for any segment of the sound to aid in visual

determination of the pitch period. An example is shown in Figure 13.

The results show that the method presented here is an adequate and accur-

ate method for determining pitch period. It is compared to Peterson and

Barney's data [111]. Table III gives a comparison between this data and

the results obtained from this method. From this table, it can be seen

that the results are good. The voiced/unvoiced decision is not a product

of PITCH. The FFTMGR routine produces an energy level for the determina-

tion of voicing. Voicing errors were made 25 percent of the time. This

is due to Lhe fact that the threshold is set to a low level. However,

the error check will restrict any wide variance of pitch. If the calcu-

lated fundamental frequency is larger than a set threshold value of 400

Hertz, then the corrcsponding sound is considered as an unvoiced sound

and no further calculations are made. These two checks allow for accur-

ate measure of pitch and voiced/unvoiced decision.

Error-free pitch estimation is critical to the overall performance

of any low-bit rate coding system. Coding systems that incorporate the

residual signal for estimation of the pitch are accurate and adequate.

Accuracy can be enhanced by using the residual in a minimum noise
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environment. The residual signal formulates a true pitch per frame that

can be used at low, synthetic transmission rates. There are several rea-

sons that have been discussed to show that this is a novel approach to

pitch extraction and is sunarized below. First, it is a two-stage method

that estimates the residual spectrum and uses time samples of the residual

to calculate the approximation of the pitch. Second, the calculation is

done by a thresholding technique which uses the square of samples. Fi-

nally, the extraction of the pitch includes an error check that estimates

wide variances of the pitch during each frame. From these, it can be

seen that this method can be considered as a hybrid technique.

TABLE III

COMPARISON OF FUNDAMENTAL FREQUENCIES

Frequency (Male)
Fundamental from

from Proposed Method of
Phoneme Peterson-Barney [111] Pitch Extraction

/i 136 129

/I/ 135 130

130 125

/x! 127 135

/u/ 124 123

/l/ 129 135

Ad 137 126

/U/ 141 151

/A/ 130 123

133 140
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2.9 Sunmary

In this chapter, the characteristics of the prediction residual were

presented. There is a parallel between the glottal waveform and the re-

sidual. The mechanism of speech production and a model of the vocal

tract is discussed. Short-time spectral analysis is presented. A review

of linear prediction analysis is discussed. A description of the imple-

mentation of operations for the calculation of the prediction residual is

discussed. A novel approach to pitch extraction is presented.



CHAPTER III

SUB-BAND CODING OF THE PREDICTION RESIDUAL

3.1 !-troduction

The average rate that speech is conveyed between humans is about ten

phonemes per second. It has been shown that the information rate of

speech does not exceed 60 bits/second [2] [67]. For the information con-

tent to be preserved, the human must be able to extract the representation

of the speech signal at this rate. It is important that the speech is

intelligible to the listener, and this aspect is the fundamental consid-

eration of coding speech.

There are two concerns in coding speech signals. First, the message

content of the speech must be preserved. The content includes linguistic

rules to form thoughts for humans to communicate. Second, the speech

signal should be represented so that it can be transmitted. At the re-

ceiver, the signal should contain the message without serious degrada-

tions.

The interest in speech coding has led researchers to consider tech-

niques that enhance signal quality, reduce transmission rate and cost,

without considering the complexity of the coding algorithm [64]. The

principle is to enhance the perceptual aspects of speech through the

coding method. In this chapter, some basic ideas associated with speech

coding are discussed. These include transform coding and sub-band-coding.

68
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Since the speech sounds are characteristically different than most acous-

tic sounds, it is necessary to consider the properties that include the

formants and energy of phonemes. Perceptual aspects that contribute

transitional cues for humans to discriminate and differentiate speech

sounds are discussed in this chapter. It is known that when human lis-

teners are exposed to speech, available to them are a set of responses

that are highly over-learned [65]. The minimum discrimination necessary

for absolute differentiation of speech sounds is discussed. Recently,

speech coding techniques have contributed efficient methods to enhance the

coding of speech signals with few degradations. This chapter discusses

some of these methods in Section 3.2. Section 3.3 presents a discussion

of the transform coding. Section 3.4 presents the method of sub-band

coding in detail. Section 3.5 discusses the determination of frequency

bands by the Articulation Index. Section 3.6 presents aspects associated

with transitional cueing information for the preception of certain pho-

nemes. Section 3.7 discusses perception of intelligible speech. Section

3.8 describes the basis for coding the prediction residual at the rate of

9600 bits/second.

3.2 Coding Methods

The oldest form of speech coding device is the channel vocoder inven-

ted by Dudley [78]. Each of the channels has center frequency wk" For

each of the channels, the time-dependent Fourier transform is represented

as a cosine wave with center frequency w k which is phase and amplitude

modulated corresponding to the magnitude and phase angle, respectively of

each transform. Therefore, each channel is thought of as a bandpass
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filter with center frequency wk and impulse response w(n). This is shown

in Figure 15.

The analysis section consists of a bank of channels as in Figure 15

with frequencies distributed across the speech band. Figure 16 shows a

complete channel vocoder analyzer.

The basic diagram for the synthesizer is somewhat different. The

specific channel controls the amplitude of its contribution to a particu-

lar channel; while the excitation signals control the detailed structure

of the output of a given channel. The voiced/unvoiced decision serves to

select the appropriate excitation generator, i.e., random noise for un-

voiced speech and pulse generator for voiced speech. A block diagram is

shown for the synthesizer in Figure 17. Channel vocoders operate in the

range of 1200 bits/second to 9600 bits/second. They are also referred to

as source coders and produce speech of a synthetic nature when at bit

rates below 4800 bits/second.

A major contribution of a channel vocoder is the reduction in bit

rate; however, direct representation of the pitch and voicing information

is not achieved. Therefore, this can be considered as a weakness.

The LPC vocoder is a very important application of linear predictive

analysis in the area of low bit rate encoding of speech. It is shown in

Figure 18.

The basic LPC analysis parameters consists of a set of P predictor

coefficients, the pitch period, a voiced/unvoiced parameter and a gain

parameter. The vocoder consists of a transmitter which performs the LPC

analysis and pitch detection. These parameters are coded and transmitted.

They are decoded and synthesized to output speech. This category of

- -r -------- ______________
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coding is of the vocoder type. In the following, the discussion of vari-

ous aspects is included.

Speech coding can be divided into two broad categories, waveform

coders and vocoders [79]. There has been some metion of a few types of

vocoders earlier. Waveform coders generally attempt to reproduce the

original speech waveform according to some fidelity criteria. On the

other hand, vocoders model the input speech according to some speech pro-

duction model; then, synthesize the speech from the model. The basic

make-up for coding the prediction residual in this thesis is of a vocoder

model. However, techniques of wav form coding are also used. It has

been shown that waveform coders tend to give better quality speech that

is robust; whereas, vocoders tend to be more synthetic [64] [79]. Bor-

rowing from the techniques of efficient waveform coders, it is conceiv-

able to define an acceptable coding algorithm to meet quality standards

at low-bit rates of transmission. A primary interest has been to produce

the transmitted speech with the minimum bit rate and still meet accept-

able quality [80]. Previously mentioned were methods available to date

for coding of the residual. Efficient methods to improve the coding

techniques are presented for coding the prediction residual.

It has been recognized that there are two efficient methods of wave-

form coding [79]. These are: (1) transform coding (TC) [81] and (2)

sub-band coding (SBC) [36] [371. These are characterized as frequency-

domain coders, whereas examples of PCM, differential PCM, and DM are the

time-domain coders. Frequency-domain coders are perceptually better than

time-domain coders because they tend to exploit the pitch of the speech

waveform for bit rates below 16000 bits/second. They tend to look at the

spectrum of speech in blocks, whereas the predictive systems look at
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adjacent samples. These two methods will be explained in detail in the

next two sections.

3.3 Transform Coding

With transform coding (TC) [81], the system of speech samples is

grouped into blocks, where each block corresponds to the windowed segment

of the speech signal. These blocks of speech are transformed into a set

of transform coefficients; then, the coefficients are quantized indepen-

dently and transmitted. An inverse transform is taken at the receiver to

obtain the corresponding block of reconstructed samples of speech (see

Figure 19).

A basic assumption in this method is that the speech source is sta-

tionary and has a variaice of o2 . The successive source output samples

are arranged into the N-vector X; this vector X is linearly transformed

using a unitary matrix A, i.e.,

Y = AX (3.1)

where A, in general, is complex, and

AA* = I (3.2)

where * denotes the transpose conjugate. The elements of Y are the trans-

form coefficients. These are independently quantized, yielding, Y. The

vector Y is transmitted to the receiver and then inverse transformed.

Then

X = A Y (3.3)

Since the vector X is reconstructed output, distortion is involved. For

unitary matrices the averaged mean-squared overall distortion of the

.
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IMPLEMENTATION OF TRANSFORM CODING

(After Zelenski and Noll, 1977).
x
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transform coder is equal to the (udntization err(Jr [82]

D = E{(X - X)T (X - X)}b N

E (Y - Y) (Y - Y)) (3.4)

N

There Ef I represents the expectation. The minimization of D will yield

an optimum bit-assignment rule arid an optimum transform matrix A [81].

Let Ji be the number of bits/sample needed for the coefficient Yi (an

entry in the Y vector) of variance o? so that the mean-squared distortion1

.= E[Y i - Yi)2] is not exceeded. Then [82]Di i

i + log2 [ -D- 
]  (3.5)

where 6 is a correction factor that takes into account the performance of

a practical quantizer. The optimum number of bits for the quantizer can

be obtained by minimizing the average distortion

1 N
l Di  (3.6)

with the constraint of a given average bit rate

1 N
R J. constant (3.7)N i=l1

The optimum bit. assignment is [81]

J. + loq bit/sample i =1, 2,..., N

(3.8)

The averdqe distortion is found to be

--'- - -:- -:= -- :-:-- - : _i ........ .. -' l l R N I I R J I l !n I .. . .
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0 2' 2-2R r IT 21
IN (3.9)

Here the distortion introduced by the transform coding scheme depends on

the distribution of variances. In addition, D is found to be the geomet-

ric mean of the variance. This leads to the solution of A matrix. Let

R and R be the covariance matrices of X and Y, thenxx yy

N
det R o. (3.10)YY - il 1

and for any unitary matrix A

det R = det R (3.11)
xx yy

In particulre, the variances o. are along the diagonal of Ryy; then,

N
det R = A X. (3.12)

where >. are the eigenvalues of R . Therefore, the minimum distortion

is found if the variances, , are equal to the eigenvalues of Rxx [81].

The Karhunen-Loeve transform (KLT) has the property that c = i for all

i.

Other unique properties of KLT are: (1) transform coefficients are

uncorrelated, (2) the covariance in the KLT domain is diagonal, and there-

fore, the transform coefficients can be quantized independently without

the loss of performance [83].

It has been noted that the KLT gives optimun performance; however,

there is a lack of a last algorithm for the computation of the coeffi-

cients. In addition, the computation is quite complex. Since speech is

a quali-periodic signal, transform coding would not be efficient unless



AD-AC92 198 IR8 FORCE INST OF TECH WRIGHT-PATTERSON AFB3 OH F/r 9/,
FICIENT COOING OF THE PREDICTION RESIDUAL. CU)
rAEC 79 L L SURGE

VjEA~~~l.tT-Cl-9-235D N

mo mmmmm i



1111 i.Q I: *8 112.5
11111 1112.

'I1.6

MICROCOPY RESOLUTION TEST CHART

NAr(ONAL BURt4U Of STANDARDS 1963



80

adaptive methods are used. However, this area still needs additional

studies. Zelenski and Holl presented promising results. Tribolet and

others [38] have done additional work in this area also. Zelenski and

Noll experimented with the Walsh-Hadamard transform (WHT), the discrete

slant transform (DST), the discrete Fourier transform (DFT), and the dis-

crete cosine transform (DCT) to compare with the KLT. All these have

fast algorithms and are signal independent. Zelenski and Noll found that

the basis vectors of the OCT and KLT are close; however, the KLT is sig-

nal dependent. It has been shown that the performances of the DCT and

KLT are similar [84]. The studies of Tribolet and others found TC to be

complex and costly; however, this method proves to be superior when com-

pared to other systems [38].

3.4 Sub-Band Coding

It is desired to retain the basic components of speech composition

and phonemic quality. TC is a very efficient method of completing the

endeavor; however, due to cost and complexity, it was discarded. The

method of sub-band coding [36] has some very distinct advantages whereby

the original goal can be met in order to secure as much of the speech

signal as possible. One criterion, perceptual in nature, is the reten-

tion of transitional information. Also, the intelligibility of speech

can be maximized by the use of the Articulation Index [29], which is

discussed in Appendix C.

With sub-band coding the frequency spectrum is partitioned such that

each sub-band contributes accordingly to the speech intelligibility which

is quantified by the Articulation Index. The Articulation Index is a

weighted fraction representing, for a given speech channel and noise

L -..
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condition, the effective proportion of the normal speech signal which is

available to a listener for conveying speech intelligibility [86]. The

speech spectrum can be divided into 20 frequency bands contributing 5 per-

cent each to the Articulation Index. In this case, the frequency spectrum

can be bandpass filtered in such a way that they contribute equally to the

Articulation Index. An example given by Crochiere and others (36] in

Table IV addresses a sub-band partitioning of four bands between 200 to

3200 Hz.

TABLE IV

SUB-BAND PARTITIONING EXAMPLE

Sub-Band No. Frequency Range (Hz)

1 200 - 700

2 700 - 1310

3 1310 - 2020

4 2020 - 3200

Obviously, there are other possibilities of partitioning the speech

band [37]. Each band contributes an equal 20 percent to the total Artic-

ulation Index. The total Articulation Index is 80 percent, which corre-

sponds to a word intelligibility of approximately 93 percent [36].
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Sub-band coding has another advantage which involves quantization.

Each sub-band is quantized separately and each band contains its own dis-

tortion and, therefore, quantization noise could be considered separately

for each band [36]. Furthermore, because of the nature of the spectrum

of speech, the detectability of this distortion is not the same at all

frequencies.

Since the proposed method is based upon sub-band coding the resid-

ual, the presentation is in terms of the prediction residual, ef(k).

For the following discussion, assume that the sub-bands are parti-

tioned as shown in Figure 20. Let the width of each of these bands be

identified by

Wn = W n+l - On n = 1, 2, ..., N=4 (3.13)

where wrn corresponds to the edges of these bands. The implementation of

the sequence of operations leading from the residual to the coded output

for transmission is shown in Figure 21. Also, shown in Figure 21 is the

implementation at the receiver. From this figure, it follows that

r(k) = (efn(k) cos w n k) * hn (k) (3.14)

where e fn(k) corresponds to the output of the nth bandpass filter and

hn (k) corresponds to the impulse response of the nth lowpass filter. It

is clear that

W 2 n (3.15)

in order that the frequency bands are properly separated. Then r(k) is

decimated to the rate 2Wn from the original sampling frequency. This

signal is then encoded and multiplexed with the other channels. At the

receiver, the signal is demultiplexed, decoded, interpolated, demodulated
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and bandpass filtered to give efn(k). This is shown in Figure 21. The

nth sub-band is then summed with other bands to produce ef(k), which is

the sub-band coded and decoded version of the signal. The total imple-

mentation of the system will be discussed later.

3.4.1 Sub-Band Coding and Transform Coding

Earlier it was pointed out that frequency-domain coders can be con-

sidered as a good basis for an efficient coder. In this section the re-

lationship between sub-band coding and transform coding is discussed.

Considering the ideal case, in which there are M sub-bands corre-

sponding to the M samples, let the discrete cosine transform (DCT) of the

residual signal, ef(k), k = 0, ..., M-l, be represented by [84]

M-1
--- 0E ef(k)0o /I k0O

n = M, ... , M-1 (3.16)

-,- M-1 (2k + l)nn
an k=O ef(k) cos 2M

Correspondingly, the residual signal ef(k) is given by

k) 1 M-I (2k + 1)nflef (k) =M an cos 2M k 0, ,..., M-1
VW nil

(3.17)

which obviously corresponds to the inverse discrete cosine transform

(IDCT). Using

n 2k 2M (3.18)

in Figure 21, it is seen after modulation and low-pass filtering

r(k) = n k=O, I, ..., M-1 (3.19)
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Since there are M sub-bands corresponding to the M frequencies, and since

r(k) is a constant, it follows that after the decimation only one point

is given for each band and that value is an. The encoder in Figure 21

codes the OCT coefficient. This points out the fact that in the ideal

case (i.e., filters and modulators are ideal), the sub-band coding will

be equivalent to the discrete cosine transform coding. Obviously, the

discussion above can be oeneralized for the case wherein there are N sub-

bands (N < M) rather than M.

It is clear that where the components in the sub-band coder are non-

ideal, the r(k) are not equal to an. Further work is necessary in quan-

tifying the difference between r(k) and an [85].

Noting the simplicity in the sub-band coder and also noting the re-

lationship between the transform coder and sub-band coder, the sub-band

coder is more practical.

3.5 Determination of Frequency Sub-Bands

Based on Articulation Index

The Articulation Index (AI) is a weighted fraction representing, for

a given speech channel and noise condition, the effective proportion of

the normal speech signal which is available to a listener for conveying

speech intelligibility [29].

In this section, the methods of determining how to achieve maximum

intelligibility based on using the AI are examined. There are two meth-

ods for computing Al. The first method, called the 20-band method by

French and Steinberg [86], is based on measurements or estimates of the

spectrum of the speech and noise present in each of the 20 continuous

bands of frequencies. Each band contributes equally to the speech
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intelligibility. The second method, known as the octave-band method, is

derived from the first method. It requires measurements of the speech

and noise present either in certain one-third-octave-band or in certain

full octave bands.

Some researchers consider these two, i.e., one-third-octave-band and

full octave-band measurements, as different methods. The octave-band

method is not as sensitive to variations in the speech and noise spectra

as the 20-band or the one-third-octave-band method. An example where it

falls apart is in situations where an appreciable fraction of the energy

of the masking noise is concentrated in a band of frequency that is one

octave or less in width; under these conditions, the one-third-octave-

band or the 20-band method would be better to use.

The 20 frequency bands are those specified by Beranek for male

voices [87]. These bands are shown in Table XXIV in Appendix C. In order

to use the 20-band method to calculate the AI, the peaks of the spectrum

of the speech signal (PSS) must be approximated first. The level depends

on if the speech is spoken through earphones or a loudspeaker. There is

an adjustment to either case of -65 dB which is considered as the over-all

long-term rms sound-pressure level of an idealized speech spectrum. How-

ever, with the loudspeaker, an additional amount is adjusted according to

Table V [29]. This is due to the assumption that the room is semirever-

berant; whereas, earphones do not present reverberance.

These corrections are obtained from experiments conducted in a re-

verberant room using a loudspeaker and from experiments conducted in an

anechoic chamber [29].

Also an additional correction must be added to correct for the noise.

spectrum. This is shown in Table VI [29]. The noise that reaches the
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listener's ear is assumed to be that of a steady-state nature. All

noises in the listener's environment and the noise in transmission systems

are combined to arrive at the noise spectrum level.

TABLE V

ADJUSTMENTS TO THE SPECTRUM OF THE SPEECH SIGNAL

Maximum Spectral Values Amount to be
of Speech Signal Subtracted

85 dB 0 dB

90 2

95 4

100 7

105 11

110 15

115 19

120 23

125 27

130 30

The corrected noise spectrum (NS) has the effect of masking the

speech signal. The noise spectrum increases at a faster than normal rate

when the band sensation level of the speech sound exceeds 80 dB [86].

ihis band sensation level is defined as the difference in decibels between
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the sound integrated over a frequency band and the sound pressure level

of that band when the speech sound is at the threshold of audibility in

an anechoic room. The increase in masking is taken into account in the

calculation of AI by adding to the PSS. If the band sensation level of

the sound exceeds 80 dB at the center frequency of a band, then the PSS

is increased by the amount that is shown in Table VI.

TABLE VI

ADJUSTMENTS FOR NOISE SPECTRUM

Band Sensation Added
Level Amount

80 0

85 1

90 2

95 3

100 4

105 5

110 6

115 7

120 8

125 9

130 10

135 11

140 12

145 13

150 14
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The noise spectrum level (NS) is compared to PSS at the mid-frequen-

cies of the 20 bands given in Table XXIV in Appendix C. Values that are

zero or less are set to zero. When PSS exceeds the noise by 30 dB, then

that difference is set to 30. This is due to the limitation on the dy-

namic range of speech [87].

The Articulation Index is defined as

AI = E Wn • (AA)max  (3.20)
n

where

(AA)max is the contribution from one band and has a maximum value of

0.05.

Wn is the percent of maximum contribution by any one band

and

Wn PSS - NS (3.21)

where 30 represents the dynamic range of the speech band and is a normal-

ized so that Wn is limited to unity. Therefore, for 20 bands, the normal-

ization is limited to 600. An illustrative example is given by Kryter

[29].

Consider the one-third-octave-band and octabe-band method. The cen-

ter and cut-off frequencies for these are shown in Tables VII and VIII

[291.

With the one-third-octave and octave-band methods, the correction

levels shown in Table V should be considered for signals received from

the loudspeaker. Also, the NS must be calculated from Table VI, and the

weighting factors need to be computed from (3.21) for each band. These

L ! . ... I
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are then summed to give the AI for the speech system operating under the

noise conditions and the level of speech.

TABLE VII

FREQUENCIES RELATED TO ONE-THIRD-OCTAVE-BAND METHOD

One-Third-Octave Band Center Frequency

179 - 224 200

224 - 280 250

280 - 353 315

353 - 448 400

448 - 560 500

560 - 706 630

706 - 896 800

896 - 1120 1000

1120 - 1400 1250

1400 - 1790 1600

1790 - 2240 2000

2240 - 2800 2500

2800 - 3530 3150

3530 - 4480 4000

4480 - 5600 5000
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TABLE VIII

FREQUENCIES RELATED TO OCTAVE METHOD

Octave Band Center Frequency

180 - 355 250

355 - 710 500

710 - 1400 1000

1400 - 2800 2000

2800 - 5000 4000

To consider how the different methods compare for the same speech

signal and masking noise, Kryter computed the AI for each of these meth-

ods. For 20-band method, AI = 0.38; for one-third-octave method, AI =

0.33; and for octave-band method, AI = 0.28. Since the 20-band method is

the basic method from which all others are derived, it provides the

"correct" AI and the others are compared to this AI.

The AI can be compared to estimated speech intelligibility scores as

shown by graph in Figure 22. It is noted that the intelligibility score

is highly dependent on the constraints placed on the message communicated.

The greater constraint (for instance, the smaller the amount of in-

formation content in each item of message), the higher the percent intel-

ligibility score for a given AI. No single Al can be used as a criterion

for an acceptable communication value. It is a function of messages

transmitted and the enunciation of the talker [29].
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The Articulation Index is a good quantitative measure of speech

intelligibility. Speech comunication can be enhanced by an equal appli-

cation of Al across the speech spectrum in the sub-band coding. In the

next section, the transitional cueing of phonemes, another aid that adds

to speech communication is discussed.

3.6 Transitional Information

The human speaks in an uninterrupted and continuous fashion to com-

municate thoughts. The underlying basis for communication is the pho-

nemic structure that connects itself by means of transitional cues for

the perception of certain phonemes [1]. It is the transitional informa-

tion that must be enhanced to aid the perception needed for absolute

discrimination of speech-like sounds [2]. Transitional cues are a set

of frequency shifts which occur in the second-formant region where a

consonant and a vowel join. The perception of a given phoneme is

strongly conditioned by the transitional information of its neighbors

[2].

The identification of phonemes has been studied under various con-

ditions by a group at the Haskins Laboratories [1]. Many of their ex-

periments have used synthetic syllables. The combinations of syllables

included consonant-vowel (CV) syllables. The consonant is usually a

stop out of a group of phonemes with the same voicing. The vowels were

maintained at two formants. Further work has been done by Rabiner [883

for synthesis of phonemes by rules. These concluded that one frequency

variable of the consonant was generally adequate to distinguish that a

consonant of the group was uttered. To further distinguish the
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consonant, the stop-vowel formant transitions were necessary to perceive

the consonant.

Figures 23(a) and 23(b) illustrate the stop-vowel formant transi-

tions. In Figure 23(a), the vowel /a/ has first and second formants

occurring at 700 Hz and 1200 Hz respectively. It is seen that the con-

sonants /b/, /d/ and /g/ demonstrate a different rise or fall in the

second formant region. The second formant varies because each consonant

has a different place of articulation. The place of articulation for

/b/, /d/ and /g/ are front, middle and back, respectively. It is seen

in Figure 23(a) that the consonants appear to commence from some trajec-

tory determined by their place of articulation.

The trajectory point is further illustrated in Figure 23(b). This

figure uses the consonant /d/ and three vowels, /a/, /i/ and /u/. It is

shown that the consonant /d/ has a loci of points that commence in the

region of 1600 Hz for the second formant. It has been shown that con-

sonants exhibit this property of transition from a particular frequency

to the steady-state value of the vowels [1].

The consonants that are perceptually heard with falling second for-

mants to the vowel /a/ are /d/ and /g/. The consonant /b/ is heard with

a rising second formant to the vowel /a/. It is noted that a shift in

second formant frequency is bounded. With falling transitions of the

second formant, /g/ is heard for steady-state levels of frequency between

2280 and 3000 Hz; however, between 1320 and 2280 Hz the sound could be

/g/ or /d/; and, below 1320 Hz, it is identified as /d/ [1].

The importance of second-formant transitions is shown for perceptual

purposes. Differences in the acoustic speech signal are due to the exci-

tation and vocal tract configuration for different consonants. These
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will differ as shown in Figure 23 by the transition regions. The con-

sonant transitions are the principal cues for the perception of a parti-

Ular consonant. The transition occurs because the vocal tract has one

shape for the vowel and one shape for the consonant. The change in the

vocal tract and the effect that the glottal pulse has on vowels has been

addressed recently [12]. Later, the coding aspects of transitional in-

formation will be discussed.

3.7 Relation of Perception

to Intelligible Speech

A topic that has been mentioned several times before is perception.

Perception related to the Articulation Index and transitional information

together for discrimination of speech sounds. A quantitative description

of speech perception is not possible. However, in a qualitative sense,

speech perception can be enhanced when the intelligibility of speech is

increased. In this section, several aspects of speech perception will be

discussed to show the need to address this subject.

Speech perception can be defined as the ability for humans to dis-

criminate and differentiate the character of speech sounds. Discrimina-

tion is examined along fundamental dimensions of the hearing mechanism

and, in general, one dimension at a time. The ear takes measurements and

makes differential comparisons. These comparisons may be of frequency

and intensity. The over-learned senses of the brain distinguishes the

speech from other periodic waves. Further, the speech must be broken in

to its discrete elements, the phonemes. Once the signal is perceived as

speech, there are other factors that determine the fundamental character-

istics of recognizing intelligible speech.
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The ability to recognize and understand speech determines intelligi-

bility. The intelligibility of speech may be affected in several ways

[86]. These may include echoes, phase distortion, or reverberation. Un-

natural sounding speech can influence intelligible understanding of

speech sounds. The intensity of thespeech may affect intelligibility of

speech received by the ear. Noise in a transmission medium may affect

intelligibility by masking the speech. The talker and listener have

several factors that can cause unacceptable intelligibility related to

the speech [86]. These are given below:

a. The basic characteristics of the speech can be destroyed.

b. The electrical and acoustic instruments which operate between

the talker and the listener may not be adequate.

c. The condition under which the communication takes place may not

be acceptable.

d. As a result of c., the behavior of the talker and listener may

be modified by the characteristics of the communication system.

The perception of intelligible speech is related to the amount of

information spoken. This is shown in Figure 22. The exactness with

which the listener identifies speech sounds is related to the size of

the vocabulary and the sequence or context of the message. As seen from

Figure 22, the more predictable the message is, the better the intelli-

gibility. It has been shown that as the vocabulary size increases, a

higher signal-to-noise ratio is necessary to maintain performance [2].

Perceptual aspects of speech are influenced greatly by semantics

and context. The ability to predict the speech utterance enhances intel-

ligibility. The grammatical rules of a language are part of the human

over-learned senses [65]. Consequently, the language prescribes a

______ i
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certain allowable sequence of words. The semantic factors occur as part

of the rules because certain words must be associated with meaningful

units [66]. It has been shown that intelligibility of speech is substan-

tially higher when a grammatically correct and meaningful sentence is

spoken than when using the same words randomly [65]. The over-learned

senses reduce the number of alternative words from the context, and

therefore, the listener has improved intelligibility.

The application of speech perception is an adaptive process. The

listener uses the detection procedure within the reception system of the

ear to determine the speech communication process. The listener can

absolutely identify speech when given the basic sound elements of the

speech. The sound elements are discriminated and differentiated from

other periodic sounds to perceive speech. If the speech is intelligible,

the exactness is not only related to how good the transmission medium is

but also to the length of the utterance and its context. These concepts

are applied in the next section to aggregate a coding algorithm for

transmission of perceptually enhanced speech.

3.8 Basis of Coding the Predictional Residual

A coding method is presented to perceptually enhance the speech.

The method uses sub-band coding (SBC) for coding the prediction residual.

Besides SBC being conceptually simple, it has the additional advantage

that each sub-band is quantized separately and each band contains its

own distortion. It should be pointed out that the input to the sub-band

coder is the residual signal rather than the speech signal. Some of the

reasons for this approach are:

a. A more efficient bit distribution based on energy/frame.

a"_
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b. A more pronounced pitch information in the residual signal, and

c. An ideal input for the synthesizer at the receiver.

In an earlier section, the advantages of using the Articulation In-

dex in SBC have been discussed. Each sub-band is selected such that each

contributes equally to the Articulation Index [36]. However, it has been

shown that "satisfactory" performance can be expected if this equal con-

tribution to the articulation criterion can be met within a factor of

two [37] [87]. This relaxation of the criteria was allowed for integer-

band sampling with good results [36] [37]. That is, the sub-bands are

between mi 0i and (mi +1) wi, where mi is an integer. The method has

popularity because it eliminates the need for modulators. Even though

the integer-sampling method requires less hardware, the selection of sub-

bands using the articulation criteria would give better perception. There

has been some research done in the selection of the sub-bands by this

method [37]. Also, it should be pointed out that the sub-band selection

depends on the multiplexing of the encoded speech [37]. This subject

will be further discussed in Chapter IV.

The coding scheme of the residual is based on enhanced transitional

cues. It has been shown that the second formant is important for percep-

tual purposes. The exact development will be discussed in this section.

The spectrum of the signal is used for calculation of the energy.

The energy can be represented by [108]

IN-1

E z . .,Ef(k)2  (3.22)
k=O

where Ef(k) corresponds to the discrete Fourier transform (DFT)
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coefficients of the signal ef(k), which can be computed by using the fast

Fourier transform (FFT) algorithm.

Equation (3.22) is applied to the prediction residual to compute the

energy. The spectrum of the prediction residual is partitioned into four

sub-bands as stated before. Using (3.22), the energies in each sub-band

can be expressed by

En - N1 IEfn(k)1 2  n = 1, 2, 3, 4 (3.23

where E fn(k) is the DFT coefficient of the signal corresponding to the

nth sub-band.

Now the total energy can be expressed by

4
ET = E E (3.24)

n=l n

Among speech sounds, ET has wide variance. Previous researchers have not

studied the variations in ET of the speech sounds for each prediction re-

sidual. This aspect is discussed in the next section.

3.8.1 Energy Distribution

This section gives the results on the energy data for phonemes. The

goal of the energy study is to distinguish between vowels, nasals and

noisy sounds. This data is used in the next chapter to determine the bit

distribution in the coding algorithm.

The phonemic data used in this thesis was obtained from recordings

of a number of monosyllabic utterances of a male talker made in an ane-

choic chamber. These utterances were lowpass filtered to 3600 Hertz.

The lowpassed filtered signal was then digitized at 8000 Hertz using the

Ilml' m" -'' =" .... .,,,b , .,.- _. _: ,- " , : I n
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program DIGITIZ. The digitized data is stored on the INTERDATA computer

system disk in data file BURGE.DAT.

For future use, the sentence data in digitized format [146] is

stored on the IBM 370 computer system. The data was lowpass filtered to

4000 Hertz and samples at 8000 Hertz. This data is stored in the files

listed in Table IX with a description of the data. Representative sona-

grams of Table IX are shown in Appendix D.

TABLE IX

SENTENCE DATA

Sentence Description File

"The pipe began to rust while new" OSU.ACTIO161.SPEECHI

"Add the sum to the product of these three" OSU.ACT1O161.SPEECH2

"Open the crate but don't break the glass" OSU.ACT!0161.SPEECH3

"Oak is strong and also gives shade" OSU.ACT10161.SPEECH4

"Thieves who rob friends deserve jail" OSU.ACT10161.SPEECH5

"Cats and dogs each hate the other" OSU.ACT10161.SPEECH6

The phonemic utterances used in this thesis are shown in Table X.

Table X represents a wide variety of speech sounds. The consonants /b/

and /h/ are used to utter syllables of the form consonant-vowel-consonant

(CVC) with the consonant /d/ in the final position for the vowels, such
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TABLE X

PHONEMIC DATA

No. Utterance No. Utterance No. Utterance No. Utterance

S -- 41 /y/ 81 /fl 121 /hid/
2 /i/ 42 /y/ 82 /bit/ 122 /hld/
3 /i/ 43 /m/ 83 /bIt/ 123 /hEd/
4 /1/ 44 /m/ 84 /bct/ 124 /h ed/
5 /I/ 45 /n/ 85 /baet/ 125 /hAd/
6 /C/ 46 /n! 86 /bAt/ 126 /hTd/
7 /c/ 47 /n/ 87 /hDt/ 127 /hUd/
8 /W/ 48 /n! 88 /bUt/ 128 /hud/
9 /av/ 49 /b/ 89 /fut/ 129 /h7d/

10 /A/ 50 /bI 90 /but 130 /hald/
11 /A/ 51 /d/ 91 Ibl 131 lh:)Idl

12 /a/ 52 /d/ 92 /aIs/ 132 /haUd/
13 /a/ 53 /g/ 93 /bDI/ 133 /hoUd/
14 /D! 54 /g/ 94 /baU/ 134 /held/
15 /DI 55 /p/ 95 /boU/ 135 /hjud/
16 /U/ 56 /p/ 96 /belt/ 136 /awa/
17 /U/ 57 /t/ 97 /Iju/ 137 /ala/
18 /u/ 58 -- 98 /wIl/ 138 /ara/
19 /u/ 59 /t/ 99 /111/ 139 /aya/
20 /YY 60 /k/ 100 /rIlI/ 140 /ama/
21 /?/ 61 /k/ 101 /yIl/ 141 /ana/
22 /al/ 62 /h/ 102 /mIl/ 142 /serV
23 -- 63 /h/ 103 /nilI 143 /aba/
24 /al/ 64 /I 104 /sen/ 144 /ada/
25 /I/ 65 /I 105 /bIl/ 145 /aga/
26 /DI/ 66 /tf/ 106 /dIl/ 146 /apa/
27 /aU/ 67 Itf/ 107 /gIl/ 147 /ata/
28 /aU/ 68 /v/ 108 /pIl/ 148 /aka/
29 /oU/ 69 /v/ 109 /tIl/ 149 /aha/
30 /oU/ 70 /V/ 110 /kIl/ 150 /aja/
31 /eI/ 71 // ill /hIl/ 151 /atfa/
32 /eI/ 72 /z/ 112 /Ill/ 152 /ava/
33 /jU/ 73 /z/ 113 /tfIl/ 153 /aga/
34 /jU/ 74 /f/ 114 /vIi/ 154 /aza/
35 /w/ 75 /f/ 115 / aet/ 155 /afa/
36 /w/ 76 /e/ 116 /all/ 156 /aea/
37 /1/ 77 /0/ 117 /fIl/ 157 /asa/
38 /1/ 78 /s/ 118 /baO/ 158 /afa/
39 /r/ 79 /s/ 119 /sIl/
40 /r/ 80 If! 120 IfIl/
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as /hid/. The vowel /a/ is used to utter nonsense syllables of the form

vowel-consonant-vowel (VCV) in both initial and final positions, such as

/aba/. A set of minimal units using the final form -/Il/ (-ill) is used

for the consonants also. Some of the other syllables used are English

words. The basic sounds are found in Table 11.

The phonemes are analyzed by the algorithms in Appendix B. The

energy data is shown in Table XI, normalized by the sound Ix/ for the

first 81 phonemes in Table X. The energy in the phoneme /ce/ corresponds

to the largest compared to each of the other phonemes. The data is cal-

culated by the program ENERGY. From Table XI, it can be seen that the

energy of the prediction residual divides the phonemes into classes by

phonemic aggregations.

It is well known that with simple LPC methods [60], the excitation

function is a set of periodic pulses or random noises which can be iden-

tified as high or low energy excitation functions. However, by using the

energy data in Table XI, the phonemes can be grouped into three classes,

namely high energy, low energy and noise groups. The high energy group

includes the vowels and diphthongs. The plosive, fricative and unvoiced

phonemes make up the noise group. The low energy group is composed of

glides and nasals. It follows that an ideal excitation signal for speech

would enhance perception by considering a three-tier classification

rather than the conventional two-source model. This would include a

source for vowels, a source for nasals and glides, and a source for

fricatives. This is the result of the phoneme energy study of the pre-

diction residual. A normalized energy distribution by phoneme for each

sub-band is shown along with the energy bands in Figure 24.

! i I
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TABLE X!

ENERGY BY PHONEME FOR PREDICTION RESIDUAL

Total
Phoneme Frequency Band SBI SB2 SB3 SB4

/i/ .44 .58 .46 .33 .3i

/1/ .75 .51 .46 .75 .45

/E/ .84 .65 .47 1.0 .$4
/c/ 1.00 1.00 1.00 1.0 1.00
/A/ .72 .67 .57 .45 .41
/a/ .72 .64 .69 .59 .35
/D/ .83 .60 .68 .70 .42
/U/ .24 .23 .25 .20 .15
/u/ .19 .29 .10 .11 .20
A/ .61 .62 .22 .64 .15

/aI/ 1.00 1.00 .79 .68 .65
/DI/ .44 .75 .45 .20 .32

/aU/ 1.00 1.00 .95 .90 .78
/oU/ .56 1.00 .31 .21 .53
/eI/ .86 1.00 .64 .66 .49
/jU/ .32 .67 .21 .22 .12
/w/ .24 .35 .24 .10 .23
/1/ .24 .29 .08 .10 .29
/r/ .14 .24 .12 .09 .07
/y/ .11 .20 .08 .08 .07
/m/ .34 .65 .25 .22 .19
/n/ .22 .45 .17 .18 .13
n/ .37 .67 .37 .24 .18
/b/ .24 .49 .11 .14 .17
/d/ .32 .63 .27 .14 .21
/g/ .31 .50 .18 .14 .16

/p/ .18 .27 .08 .07 .08

/t/ .45 .46 .32 .26 .25
/k/ .32 .63 .23 .19 .20
/h/ .45 .46 .24 .31 .31

/j/ .53 .51 .44 .31 .58

Itfl .23 .46 .16 .10 .11
/v/ .16 .29 .13 .09 .09
/1/ .17 .32 .13 .12 .10
/z/ .24 .44 .17 .19 .15

/f/ .07 .04 .07 .05 .12

/e/ .11 .21 .09 .07 .05

/s/ .08 .05 .06 .06 .13
WY .10 .06 .07 .07 .18
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Based on the above discussion, phonemes can be classified into three

energy groups: (1) high energy (HE), (2) low energy (LE) and (3) noise

(N). To do this, the normalized residual phoneme energies (second column

in Table XI) are the first tabulated; from this, there are clear breaks

in the energy levels and therefore three energy groups formed. These

breaks are used to identify the threshold values for a particular energy

group. For the high energy group, let T11 be the threshold value. That

is, any phoneme that has normalized residual energy greater than T11 is

classified into the high energy group. Similarly, T2 2 and T33 are the

established threshold values for low energy and noise phonemes respec-

tively. The three groupings are given in Table XII. The threshold

values Tii, i = 1, 2, 3, can be identified from Figure 24. These are

for the entire frequency range.

TABLE XII

PHONEME ENERGY GROUPINGS

Energy Groups Phonemes

HE i, I, , a , a, A, D, U, u,

LE m, n, n, z, w, 1, r, y

N f, f, b, d, g, p, t, k

I*
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For the sub-band coding, threshold values need to be computed for

each band. Also, each energy group has to be divided into four subgroups

corresponding to the four sub-bands. Let Ein be the normalized signal

energy in the nth frequency band corresponding to the phoneme that is in

the ith energy group. This is explicitly shown in Table XIII. For

example, E12 represents the energy in the second frequency band corre-

sponding to the high energy phoneme (first energy group).

The threshold values for Ein (referred hereafter as Ein) in Table

XIII will now be established using columns 3, 4, 5 and 6 in Table XI.

TABLE XIII

SYMBOLIC REPRESENTATION OF ENERGY DISTRIBUTION

Frequency Band

1 2 3 4

H E11  E12  E13  E14

L
E21  E22  E23  E24

U-j

N E31  E32  E33  E34

E. is listed for various phonemes in columns 3, 4, 5 and 6 inin

Table XI. To make the classification speaker independent, the Ein has

to be normalized by ET given in (3.24). Let

__ _
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ET En n = 1, 2, 3
E.i ETi
in T n =1, 2, 3, 4 (3.25)

From this, it is clear that

T <=1,2,3
Ein .0 n =l, 2, 3, 4 (3.26)

As before, ET in (3.25) are tabulated for i = 1, 2, 3 and n = 1, 2,
in

3, 4. The breaks are established from this tabulation and the threshold

values are obtained from these breaks. These are tabulated in Table XIV.

The array in Table XIV will be referred hereafter as energy threshold

matrix. This matrix will be used in computing the bit allocation scheme,

which is discussed in the next chapter.

TABLE XIV

ENERGY THRESHOLD MATRIX

Frequency Band

1 2 3 4

H .58 .27 1.0 .75

L .50 .19 1.0 .86

N .46 .27 1.0 1.00

.
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3.9 Sunuary

In this chapter, th.pr basis of coding the prediction residual at the

rate of 9600 bits/second using the techniques of sub-band coding was pre-

sented. Transform coding and sub-band coding wwere discussed along with

their relationship. The method of achieving maximum intelligibility

based on the Articulation Index was presented. Transitional information

of speech along with the relation of speech perception to intelligibility

was discussed. Phonemes have been divided into three energy groups so

that these can be used in the bit allocation scheme to be discussed in

Chapter IV.



CHAPTER IV

ENERGY BASED SUB-BAND CODING ALGORITHM

4.1 Introduction

In this chapter the sub-band coding algorithm, introduced in Chapter

III, is examined with the prediction residual as the input source signal.

The coding algorithm combines spectral analysis and waveform coding tech-

niques. The combination is intended to provide perceptual enhancement of

the speech. The perceptual aspects of speech are a key factor in the bit

distribution of the coding algorithm. The bit allocation is established

by using the energy groups discussed in the last chapter. For each frame

and for each sub-band, the energy En = IEfn(k)l 2 is computed, where
N k

En indicates the energy corresponding to the nth sub-band in a given

frame.

It is well known that most of the spectral density for vocalic

sounds and the fundamental frequency are basically found in the sub-band

number one (lowest frequency band). The intensity of the energy is sub-

stantially high. Spectrogram data can show this. The second formant

resides predominantly within the second and third sub-bands and is of the

low energy type. These formants determine the transitional cues for cer-

tain perceptual effects. The energy of noisy speech sounds, i.e., voice-

less fricatives, plosives, etc., has a basic flat spectrum and most of

the energy is above 2 kHz. The perceptual effects are discerned in this

frequency range. The spectrograms show the intensity of the signal

111
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energy represented by varying shades of gray or black areas [2]. The

higher the energy, the darker the area. Spectrograms are included in

Appendix D. These figures are included to show the different energy

levels associated with different phonemes. From these spectrograms, it

can be seen that vowels are typified by dark areas; whereas fricatives,

plosives, etc., are shown in a gray area. Although all voiced sounds

show a dark color on the spectrogram, Makhoul and Wolf [90] have shown

that nasals and glides have a lighter shade when compared to other voiced

sounds.

In this study, the energy in each frame of the prediction residual

is calculated for each type of phoneme. The bits per sample in each band

is allocated on an adaptive basis, using the perceptual criteria dis-

cussed in the last chapter. The next section deals with the bit alloca-

tion scheme.

The bit allocation method is incorporated into the sub-band coder,

which is discussed in Section 4.3. The adaptive strategy is combined

with a uniform quantizer with results presented in Sections 4.4 and 4.5.

Section 4.6 gives the details of the modules for computational aspects

of the coding of the prediction residual.

4.2 Bit Allocation

In this section, the bit allocation scheme is discussed using the

energy groupings in Tables XII in Chapter III. In symbolic form, the bit

distribution is shown in Table XV for a three-energy level--four sub-band

coder, where the rows correspond to the energy levels and the columns

correspond to a particular frequency band. For example, k23 bits per23j



113

sample are assigned for the second energy (LE) band and the third fre-

quency band.

TABLE XV

SYMBOLIC REPRESENTATION OF BIT DISTRIBUTION

Frequency Band

1 2 3 4

High Energy (H) kll k12 k13 k14

Low Energy (L) k2 1  k2 2  k2 3  k24

Noise (N) k31  k32  k33  k3 4

The bits are allocated by the empirical formula

E.. i = 1, 2, 3
k. . 1092(1 + 11

13j = 1, 2, 3, 4 (4.1)

where E.. is the energy from Table XIII and a. is a normalization factor

determined from the constraint

4
E ki N. = C i = 1, 2, 3 (4.2)

j=l 13 3

with Nj, j 1, 2, 3, 4, being the number of samples in each band after

decimation. The value of C is equal to the total number of bits/frame
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minus the number of sync bits per frame. Combining (4.1) and (4.2), it

follows that

4 E..

j=l Nj[1og2 (l + 1'-)] = C i = 1, 2, 3 (4.3)

where the normalization factor, aj, can be determined from (4.3). Equa-

tions (4.1), (4.2) and (4.3) define the algorithm.

The normalization factor is included to take into consideration the

perceptual aspects of the signal. It is used as a weighting factor for

transitional cueing. It has been shown that pitch, formant areas, nasal-

ity and affrication are important for speech perception. Within the

speech spectrum, these characteristics occur in certain frequency ranges.

The power density of speech can indicate this conception, and is dis-

cussed below.

The speech power density spectrum is shown in Figure 25. It is

clear that most of the energy is below 1000 Hertz. It has been shown by

Miller and Nicely [91] that below 1000 Hz, voicing, nasality, and affri-

cation are predominant for determination of the phonemic content. It has

been pointed out that given a set of speech signals, a weight factor can

be derived when the speech is separated into sub-bands. When these sig-

nals are coded properly, there is an advantage of distinguishing certain

perceptual effects such as voicing, nasality and affrication. The per-

ceptual effects can be used for calculation of bits for coding.

To compute the normalization factor properly for coding the residual

signal, a bit matrix is chosen. The bit distribution that is selected is

based on perceptual concepts. This matrix will be referred to as an a

priori hit matrix. In addition to perceptual concepts, the a priori bit
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matrix is selected such that the bit rate is 9600 bits/second for the

sub-bands given in Table IV. The matrix is shown in Table XVI, where the

Aentries will be referred to as k. to denote the a priori values.13_ ____

TABLE XVI

A PRIORI BIT MATRIX DISTRIBUTION

Frequency Band

1 2 3 4

High Energy 1 4 3 2 2

Low Energy 2 3 3 3 2

Noise 3 2 3 3 3

The a priori bit matrix is based on experimental results on pho-

nemes. A cursory inspection of Table XVI reveals that the perceptual

criteria is preserved. For example, on lower bands where pitch and for-

mant data must be preserved as accurately as possible, a large number of

bits per sample are used for encoding, whereas for upper bands where

fricatives and noisy sounds are predominant, fewer bits per sample are

used. Note that the same number of bits for each energy group is allo-
A

cated. Also, the a priori bit values (k. ) are used to compute the nor-

malization factor in (4.1).

Id
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When the energy of the speech sound is determined to be high enough,

the energy threshold introduced in Chapter III selects the energy matrix

(from Table XIII) and a priori bit values (from Table XVI). These are

used to calculate the normalization factor from (4.1), and

ET i = 1, 2, 3
_ ij (4.4)

-J (k A ) A 1 = 1, 2, 3, 4

T

where Ei is the energy obtained from threshold matrix and kA. is obtained

from the a priori bit matrix. Figure 26 gives the distribution of (1/aj)

based upon (4.4).

Equation (4.1) can mow be used to allocate the bits. It should be

pointed out that in using this equation, actual energy values of the sig-

nal will be used rather than the threshold values. The following steps

are performed to allocate the bits.

1. Spectral estimates are computed for each sub-band.

2. The total energy in the frame for the entire frequency band is

computed.

3. Eij's are computed.

4. Normalization factor, oj, is computed

5. The bits are allocated by

E.l i = 1, 2, 3k ij = 10g2 (l + o0-o1j) (4.5)
1j =1, 2, 3, 4

where E.. is the energy in the jth sub-band corresponding to the ith

energy group and o. is the normalization factor from (4.4). Figure 27

gives the flow chart for the bit allocation scheme.
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Equation (4.5) has been simulated using the phonemes in Table XII.

The bits are averaged for each energy group. The results of the simula-

tions are shown in Figure 28 for each of the three energy groups. Dis-

tinctly shown is a separation of the energy groups. Note that the low

energy group which contains the nasalic and glide sounds is shown to

separate the high energy and noise groups. This separation supports the

three-source theory of the residual signal.

Earlier, it was shown that the residual signal parallels glottal

excitation. The use of the residual signal for encoding the speech and

later exciting the speech synthesizer has several benefits. The bits are

minimized in the first and second sub-bands, reducing the necessary trans-

mission rate for these sub-bands. It is unnecessary to transmit twice as

many bits for sounds with nasalic, glide or liquid characteristics. On

the other hand, the discrimination from the noise is shown to be distinct.

The benefit remains clear further, because perceptual criteria will be

enhanced in all sub-bands. Discrimination of sounds can be benefited with

a minimum bit allocation.

The bit distribution is shown by frame for each phoneme in Figure 29.

Again, it is shown that the perceptual criteria is preserved in that the

pitch and formant prediminant phonemes receiving a substantial bit allo-

cation and fewer bits are allocated for fricative and plosive phonemes.

Noting that the total number of allowed bits per frame is constant, the

difference in bits per energy group is adjusted in the synthesis bits.

This is discussed in detail in the next section.

4.3 Sub-Band Encoding of the Prediction Residual

The bit allocation scheme was used in the perceptual aspects of
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speech in sub-band coding of the prediction residual. The sub-band coder

partitions the frequency band of the residual signal into four sub-bands

by using the bandpass filters. The partitioning of the frequency bands

is shown in Figure 20. Each sub-band is low-pass translated, decimated

[by the Nyquist interval obtained from (3.15)], and encoded according to

the bit allocation scheme discussed above. It has been shown that sepa-

rate coding of each sub-band accomplished the preferenctial perception

criteria for that band [37]. The decoding of each sub-band involves an

interpolation and translation back to the original band. The bands are

summed to arrive at an estimate of the original residual signal (see Fig-

ure 21). This section describes the sub-band coding parameters, the

relation of the sub-bands to the Articulation Index and other perceptual

criteria discussed in this thesis.

The cutoff frequencies for the sub-band coder are shown in Table

XVII. The guideline established for selection of cutoff frequencies is

to represent an approximately equal contribution to the Articulation In-

dex. The bands shown in Table XVII represent enough of the important

frequencies such that intelligibility is preserved.

TABLE XVII

SUB-BAND CODER CUTOFF FREQUENCIES

Band Cutoff Frequency (Hz)

1 250 - 500
2 500 - 1000
3 1000 - 1700
4 2000 - 3000
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The integer-band sampling scheme [37] was also analyzed at the sam-

pling rate of 8000 Hertz. The technique requires the ratio of upper to

lower cutoff frequencies of the sub-band be (mi + 1)/m i, where mi is an

integer. These bands are related at the bit rate such that the data can

be synchronized when multiplexed. Table XVIII is helpful in constructing

the sub-bands. Previous authors have given the choice of bands that re-

late at other sampling rates [36] [37]. Shown in Table XVIII are integer-

band sampling cutoff frequencies for an 8000 Hertz sampling rate. The

integer decimation ratio is shown in Column 1 for 8000 Hertz. The band-

widths, ft are indicated in Column 2. The sampling rate, 2fi, is shown

in Column 3. In Columns 2, 3 and 4, the cutoff frequencies are indicated

implicitly. Integer-band sampling is not used in this thesis, and is

given here for completeness.

To explain how each band is related, the analysis of the sub-band

coder is discussed. The sub-band coder is designed for 9600 bits/second.

The transmitted coder parameters include the sub-band coded prediction

residual signal, PARCOR coefficients and sync bits. Table XIX represents

a breakdown of sub-band coder parameters for the high energy phonemes.

Table XX shown sub-band coder parameters relative to the low energy

sounds. Table XXI represents those parameters relative to the noise

sounds. The difference in Tables XIX, XX, and XXI are the bits allocated

and the transmission rates per band, and the sync bits.

It is well known that the decimation rate shown in Column 4 of Tables

XIX through XXI represent an integer number of samples available before

encoding. These available samples are related to the 9600 bits/second

transmission rate. The fractional representation for each frame and sub-

band samples are shown in Table XXII.
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TABLE XVIII

INTEGER-BAND SAMPLING CUTOFF FREQUENCIES FOR
8000 HERTZ SAMPLING RATE

Decimation f 2fi 3fi 4fi
Ratio 1 1 1 1

1 4000 8000 12000 16000
2 2000 4000 6000 8000
3 1333 2666 3999 5332
4 1000 2000 3000 4000
5 800 1600 2400 3200
6 666 1332 1998 2664
7 571 1142 1713 2284
8 500 1000 1500 2000
9 444 888 1332 1776

10 400 800 1200 1600
11 363 728 1089 1452
12 333 666 999 1332
13 308 616 924 1232
14 286 572 858 1144
15 266 534 798 1064
16 250 500 750 1000
17 235 470 705 940
18 222 444 666 888
19 210 420 630 840
20 200 400 600 800
21 190 380 570 760
22 182 364 546 728
23 174 348 522 696
24 167 334 501 668
25 160 320 480 640
26 154 308 462 616
27 148 296 444 592
28 143 286 429 572
30 133 266 399 532
31 129 258 387 516
32 125 250 375 500
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TABLE XXII

REPRESENTATION OF SAMPLES FOR A FRAME FOR HIGH ENERGY SOUND

Band Fraction/Frame Samples/Frame

1 .207 53

2 .312 80

3 .180 45

4 .207 53

Sync and Synthesis .094 24

1.000 256 Samples/Frame

The multiplexing (see Figure 21) is simulated on the computer by

first appending each of the decimated signals to 256 points per frame by

adding zeros. Second, the DFT's of these are taken. Third, the trans-

formed signals are summed. Finally, the IDFT of the summed signal is

the multiplexed signal, which has 256 points. The demultiplexing in

Figure 21 is simulated using the inverse process. That is, first, the

decoded signal is transformed. Second, it is divided into four frequency

bands. Third, these frequency coefficients in each band are appended by

zeros to get 256 points. Finally, the IDFT of these signals are taken,

which gives the demultiplexed signals.

Shown in each of Tables XIX through XXII is a band labeled "Sync and

Synthesis." These parameters include synchronization bits and synthesis

parameters for the receiver. The synchronization bits include one to
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establish the beginning of a frame and three to determine if the frame

contains a high, low or noise energy signal. The remaining samples in

the sync and synthesis bits are allocated to the PARCOR coefficients for

synthesizing the speech.

The PARCOR coefficients are distributed between the range of IkjI <

I and, in most cases, the entire range is not required [28]. It has been

shown that the odd-ordered coefficients are somewhat skewed toward the

positive side, whereas the even-ordered coefficients are someqhat skewed

toward the negative side [28]. The limitation of a quantizer range re-

sults in better speech quality for a given number of bits assigned to

each coefficient. These parameters have been studied in depth in the

literature. Further quantization characteristics of the PARCOR coeffi-

cients can be found in [7) [28] [31] [119]. Thse aspects are used in

adjusting the synthesis bits in Tables XIX to XXII, and is outlined

below.

Specifically, the following procedure can be used in assigning bits

for synthesis parameters. For high energy sounds, 20 bits can be utilized

for the 10 PARCOR coefficients. The bit allocation for low energy sounds

for the PARCOR coefficients is 70. For the noise energy sounds, the bit

allocation is 170. Note that more bits are available for the PARCOR

coefficients corresponding to the low energy and the noise signals as

compared to the high energy signals. These allocations in synthesis

parameters for encoding are adequate. Actual implementation of the bit

allocations for the PARCOR coefficients and their effect on the coder has

yet to be done.

The find tuning of quantization parameters has yet to be done. The

total sub-band system requires many trade-offs in the analysis section.
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In the analysis section, allowance must be made for the transmission rate

for each sub-band. In the next section, the uniform quantization method

is discussed.

4.4 Adaptive Uniform Quantization

The sub-band coder partitions the residual signal into four fre-

quency bands. These banded signals are passed to the quantizer for re-

duction of information content. The design of the quantizer is determined

by the bits allocated as discussed earlier. The amplitude of each resid-

ual signal sample is quantized into one of 2IBITS levels, where IBITS is

the number of bits allocated for the sub-band. The information content

of the digitized signal is IBITS bits per sample. It is shown in Column

6 in Tables XIX through XXI that the information rate for each sub-band is

Information Rate = (Sampling Freq.)n x I bits/second

I = l, ..., IBITS (4.6)

where (Sampling Freq.)n is the sampling frequency for the nth sub-band.

After quantization the discrete amplitude level of the signal sample

has a value expressed in binary decimal of length IBITS. The value of

IBITS ranges from I to 5. For example, the value of 2 for IBITS yields

amplitude levels of 00, 01, 10 and 11; whereas, a value of 5 would yield

32 five binary length words.

The range of the quantizer is aligned such that the amplitudes of the

input residual signal will be within the range of the maximum swing of the

output of the quantization levels. The methcl for accomplishing the

assurance that no overload occurs is based on a scheme of analyzing each

frame before quantization; i.e., the range of the signal is found before

quantization. This is compared to the bits allocated. An adjustment is
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made if needed by rounding the bits allocated to the next integer. The

method of quantization will be discussed next. 4

It has been shown that a characteristic of sub-band coded speech is

that it has no sample-to-sample correlation [36] [37]. Following this,

encoding is best performed by adaptive pulse code modulation (APCM) [109]

(121). Previous encoding based on differential or fixed prediction does

not achieve good results for speech using sub-band coders [37]. Each

sub-band utilizes a uniform quantizer characteristic. Each sub-band

exhibits a different level of energy; therefore, an adaptive uniform

quantizer is used utilizing a technique that shrinks and expands the

quantizer by sub-band such that the signal is within the range of the

maximum quantization level for that sub-band.

To implement the adaptive uniform quantizer, let the step size be

denoted by A. Figure 30 illustrates the characteristic for the adaptive

uniform quantizer [109] and will be idscussed in detail. It is well

known that the uniform quantizer level produces error which follows the

uniform distribution. That is, the probability density function of the

quantization error Qe is given by

f = A <Qe < 2  (4.7)

with the variance

(72(Qe A2 (4.8)

The step size is dependent on the bits allocated.

Let the number of levels be represented by

NL = 2i i = 1, ... , IBITS (4.9)
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then

Aefn(n) ] (4.10)A-NL fn max

where e fnn ]max is the maximum value of the nth sub-band residual

signal.

In order to achieve the quantized value, let

j = [&l' &2 .... , NL (4.11)

be an MyL)-vector used to identify the parameters of the quantizer levels

such that

Q = A• (4.12)

where the vectors _Q and _ are of dimension NL and represent the quantizer

values. The entries in 9 are given by

(LK(L 2- k + I) 1 < < N

2 - 2

0 NL

NL+ 2 < R < NL (4.13)

2 _

From (4.12) and (4.13), it follows that the quantized level Q in Q is

given by

Q t = A •(4.14)

The quantized values of the residual signal are obtained by rounding it

to the nearest quantized level, which is used to code the signal.

In the next section, performance measures are discussed for the

quantizer and the sub-band coder.
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4.5 Signal-to-Noise Ratio

Performance Measurements

In the previous section, the quantization is done for the banded

prediction residual. In this section, performance measuremetns will be

discussed. It has been recognized in the literature that signal-to-noise

ratio (SNR) is an inadequate performance measure for speech coding [109].

This idadequacy is realted to the idea that additive white noise is not a

good model for error waveforms in speech quantization. Generally, most

authors supplement the SNR by subjective and perceptual measurements as a

rule.

The SNR is still the single most informative measure for quantizer

performance (109]. If the quantizer is designed for maximum SNR, the

step size can be chosen according to the probability density function of

the signal [122]. However, the SNR improvement is offset by greater idle

channel noise for speech [123]. The result is poorer subjective perfor-

mance [123]. Therefore, to enhance SNR an adaptive quantizing technique

is used based on the allocation of bits.

It has been shown that transform coding with adaptive quantizers

maximizes SNR and lowers the idle channel noise [81]. Intuitively, sub-

band coding should follow under similar conditions. With sub-band

coding, the quantization noise of each band is contained within that band

and therefore, minimizes the quantization noise of the coded speech [36].

Due to the characteristics of the speech spectrum, the quantization dis-

tortion is not equally detectable at all frequencies. This technique

offers a means of controlling the quantization noise across the speech

spectrum and, therefor a realization of improvement in signal quality

[36).
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The definition of each objective measure will be discussed next.

Perhaps the most common measurement of performance is the conventional

(normalized) SNR which is defined as

N-i 1
(x(k) -y(k))

NSNR = -10 logo N-I (4.15)

E x2(k)
k=OJ

where x(k) is the input to the coder and y(k) is the output of the de-

coder. It is assumed that the numerator represents the noise of the

coding technique, such that as the noise decreases a smaller SNR will be

the result of the summation in (4.15). The advantage of this quantity

is a representation of the normalization of the error between the coder

input and the decoder output. For speech there is no perceptual advan-

tage in maximizing the SNR; however, the SNR in (4.15) could be optimized

for the autocorrelation of the speech [122].

Another measure similar to (4.15) is the root-mean-square error

which is defined as

E (x(n) - y(n) )2

RMSSNR = -20 log,,o n=O N (4.16)

where x(n) and y(n) are defined as before. In (4.16), the error is

assumed to be of random nature, and is normalized by the factor N, the

number of data points.

A third measure is defined as

-- ~V 4 ..
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1N- 1  [(x(n) - y(n) 2

MSSNR = 10 log (4.17)n=O I 2n

where x(n) and y(n) are expressed as before. The representation in (4.17)

defines some measure of error.

The results using (4.15), (4.16) and (4.17) are shown in Table XXIII.

These are computed by program SNRCAL (see Appendix B). These results

exemplify good coder performance. Note that these simulations are done

without bit assignment to PARCOR coefficients. Several phonemes are used

in these measurements and they give an adequate measure of the coder.

However, the complete simulation should include quantization of all param-

eters to complete the 9600 bits/second coding algorithm. The next section

discusses the computational aspects for coding and decoding the prediction

residual.

TABLE XXIII

SIGNAL-TO-NOISE PERFORMANCE MEASUREMENT
FOR SEVERAL PHONEMES

Phoneme RMSSNR NSNR MSSNR

/1/ 29.2 36.7 18.2
/e/ 37.2 36.9 19.1

/ae/ 35.1 37.4 17.5
/A/ 32.9 34.9 15.2
/a/ 30.1 38.4 18.3
/u/ 36.8 38.7 17.7
/1,4 29.8 38.0 18.4

/al/ 31.3 37.0 18.2
/aU/ 34.2 38.4 18.7
/oU/ 29.4 37.9 16.8
/el/ 33.4 39.0 17.0
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4.6 Comiputation for Coding the

Prediction Residual

The flow chart that gives all the computer modules is given in Fig-

ure 31 for coding the residual signal. The data blocks shown in Table

XXIV represent data processed and online storage during the computations.

TABLE XXIV

DATA BLOCKS FOR PROCESSING AND STORAGE

Data Block Record Number of
Name Length Records Module Used

BURGE.OAT 256 82 DIGITIZ/WINDOW

WINOOW.DAT 256 16 W4INDOW'JAUTO/LATTIC/INVERS

AUTO.DAT 176 16 AUTO/LATTIC/INVERS

RESIDUAL.DAT 256 16 INVERS/LATTIC/FFT!4GR/SUMLPD

SPECTM. DAT 256 16 FFTMGR/RESULT/(PITCH)

BITS.OAT 16 16 FFTMGR/SUMLPD/ENCODE

PHAZ.DAT 256 16 FFTMGR/RESULT

CODE.DAT 256 16 ENCODE/DECODE

SIGNAL.DAT 256 16 DECODE/RESULT

SQNR.DAT 256 16 RESULT

SBAND1.DAT 256 16 SUMLPD/ENCODE

SBAND2.DAT 256 16 SUMLPD/ENCODE

SBAND3.DAT 256 16 SUMLPD/ENCODE

SBAND4.DAT 256 16 SUMLPD/ENCODE
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The modules are arranged to generate and use the data in Table XXIV

on the INTERDATA 70. The tape recorder inputs an analog signal to the

computer while DIGITIZ computes a sampled signal and stores the digitized

signal on disk in location BURGE.DAT. DIGITIZ is set up to store 4096

points. This program calls an assembly language digitizer and sequence

clock for sampling. This program is flexible for sampling any analog

signal and storing the signal on disk.

Program WINDOW uses the data on disk, BURGE.DAT. The data is win-

dowed using a 256-point Hamming window. The user has the option of

selecting which record of the digitized data to window. The program

reports the sequence selected and also scales the data. The window data

is written in data block WINDOW.DAT.

Routine AUTO calculates predictor and PARCOR coefficients using

Levinson's method [61]. The program uses as input the window data, WIN-

DOW.DAT. The output is an array, AUTO.DAT, containing autocorrelation

coefficients, predictor coefficients, cross-correlation coefficients and

reflection coefficients.

Routine INVERS uses the data from AUTO, AUTO.DAT, for use in the

lattice filter implementation from Equation (2.31) and (2.34). The order

of the filter is ten. The output from this program are the residual

values. This output is stored in RESIDUAL.DAT. Routine LATTIC is the

sames as INVERS except that LATTIC gives the user the option to produce

a plot of the speech and prediction residual on CALCOMP.

The FFTMGR module is an FFT manager that includes a bit reversal and

unscrambler. The input to this program is the prediction residual, RE-

SIDUAL.DAT. This routine calculates the avergae spectrum, magnitude

square and the energy of the prediction residual. It calculates the
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energy per sub-band. It uses an a priori estimate of the energy and bits

to calculate the normalization factor and bits for each sub-band. The

program writes on disk the spectrum, SPECTM.DAT, the bits allocated,

BITS.DAT and the phase, PHAZ.DAT. It also gives the user the option for

a plot of the spectrum on CALCOMP.

Routine SUMLPD passes the prediction residual through a digital

bandpass filter. The signal is modulated, lowpass filtered and decimated

as shown in Figure 21. The input to this program is the data file RESID-

UAL.DAT. The outputs are the four sub-bands, SBAND1.DAT, SBAND2.DAT,

SBAND3.DAT, and SBAND4.DAT.

The signal corresponding to the four sub-bands are encoded using the

bits allocated in BITS.DATA by useing the program ENCODE. ENCODE allows

for 32 levels of code. In case of non-integer numbers, the quantizer,

QUNTIZ, rounds the bits to determine the number of quantizable levels.

A uniform quantization is used to determine the code. The output is

written in CODE.DAT.

Routine DECODE uses CODE.DAT as input. In the initial frame, the

maximum number of quantization levels is determined. This maximum sets

the level for the inverse quantizer. Then the signal is decoded and

written in file SIGNAL.DAT.

The program RESULT interpolates, modulates and bandpasses the signal,

SIGNAL.DAT, for reconstruction. The routine calculates signal-to-noise

ratio given by (4.15) and (4.17).

4.7 Summary

In this chapter, the energy based sub-band coding algorithm was pre-

sented. The method of allocation of bits was discussed. The design of

-* - -~
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the sub-band encoding of the prediction residual was presented. The com-

putational aspects for coding the prediction residual were discussed.



CHAPTER V

SUMMARY AND SUGGESTIONS FOR FURTHER STUDY

5.1 Summary

This thesis investigates an efficient coding of the prediction resid-

ual using the technique of sub-band coding at the bit rate of 9600 bits/

second. The energy of the prediction residual is used to distribute the

bit allocation by sub-bands such that perceptual criteria is preserved.

The perceptual criteria is enhanced by transition information embedded in

the phoneme connections of speech by a technique that weights the energy

based on a normalization factor.

Each sub-band is partitioned such that there is an equitable contri-

bution to the Articulation Index as it is a measure of speech intelligi-

bility. This is discussed in relation to the quality of speech. The

perception of speech is described in a qualitative sense. The relation-

ship between the Articulation Index and transitional information is de-

scribed as a method of discrimination of speech sounds.

The prediction residual is discussed as ; parallel to the glottal

waveform. The prediction residual is formed by speech through an inverse

filter. This is represented as a deconvolution of speech from the vocal

tract filter.

The vocal tract filter is modeled as a recursive digital filter

using the method of linear prediction. Linear prediction produces the

143
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prediction residual, which is the difference between the actual and pre-

dicted speech signals. Because the prediction residual is parallel to

glottal excitation, the prediction residual is an ideal pitch extractor.

A novel pitch extraction technique is presented. It is a two-stage

method that estimates the residual spectrum and uses time samples of the

residual to calculate the approximation of the pitch. The technique cal-

culates a threshold which uses squared samples to extract the pitch with-

in a frame. Also it includes an error check that estimates wide variances

of the pitch within each period and is then updated.

The three-tier classification of phonemes is derived from the energy

study of the phonemes for the prediction residual. It is shown that the

energy of the prediction residual divides the phonemes into classes by

phonemic aggregations, namely high energy, low energy and noise groups.

The high energy group includes the vowels and diphthongs. The plosive,

fricative and unvoiced phonemes compose the noise group. The low energy

group is composed of glides and nasals.

The three-tier classification of the energy levels along with the

four frequency bands allows for efficient allocation of bits per sample

for each band. The above method aids in preserving perceptual criteria

and preserves pitch-formant data by the allocation of a large number of

bits per sample in the lower bands. Since fricative and noisy sounds are

predominant in the upper bands, a smaller number is used in the lower

bands. The perceptual criteria is further enhanced by a normalization

factor.

The normalization factor is perceptual in nature and is used as a

weighting factor for transitional cueing. The derivation of the
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normalization factor is discussed. Additional variations are given for

the relationship of the three phonemic classes to the normalization

factor.

The sub-band coder is designed based on the normalization factor,

the energy data, and the bit allocation. The parameters are computed on

a frame-by-frame basis. The sub-bands are constructed such that the bit

rate of the data from each band can be synchronized when multiplexed at

9600 bits/second. The integer-band sampling scheme is analyzed at the

sampling rate of 8000 Hertz for a 9600 bits/second transmission rate.

The sub-band coder is designed to transmit the coded prediction residual

signal, synthesis parameters and sync bits at the 9600 bits/second rate.

An integral part of the sub-band coder is the quantizer. The en-

coding of the signal is designed based on adaptive pulse code modulation.

Uniform quantization is used. The characteristics of the quantizer are

discussed in detail. Performance of the quantizer is described in terms

of signal-to-noise ratios (SNR) for objective criterion for quality. The

conventional (normalized) SNR is used for representing the error of the

coder input and the decoder output. The mean-square SNR is used for an

indication of gross error. These SNR measurements are only an indication

for quantizer performance. Generally, the SNR must be supplemented by

subjective and perceptual measurement as a rule. However, the SNR mea-

surements in this thesis are used without listeners.

In the following, some extensions to the present effort are sug-

gested. Appropriate references are indicated.
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5.2 Suggestions for Further Study

5.2.1 PARCOR Coefficient Study of Sensitivity

The PARCOR coefficients introduced in Chapter II have been thoroughly

investigated because of their importance to speech analysis and synthesis

[9] [28] [31]. The priority is geared toward the synthesis of speech; in

that given the prediction residual and PARCOR coefficients, the speech

signal can be adequately regenerated. An extension of the present work

would enhance present efforts in this area by studying the sensitivity of

PARCOR coefficients with respect to the sub-band coding of the prediction

residual.

5.2.2 Sub-Band Coding Using Subjective

Measurements

The present work can be further advanced by the use of sub-band cod-

ing the prediction residual at various bit rates. The synthesized signal

would then be used in a comparative study for various bit rates. The per-

ceptual question concerning the method should be geared towards a record-

ing of the synthesized speech so that a set of listeners could hear the

results.

5.2.3 Energy Threshold Matrix Study

The introduction of the energy threshold matrix (ETM) in Chapter III

requires further study. In this work it is seen that the ETM is highly

dependent of perceptual criteria; consequently, several variations would

benefit the present work. In some instances, it is necessary to bias the

energy group to enhance the perceptual aspects; but this is unknown until
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the energy distribution is computed. The results of ETM are dependent on

transmission rates; however, given one transmission rate, several ETM may

be equally applicable to the coding.

5.2.4 Integer-Band Coding of the Prediction

Residual

The integer-band coding method introduced in Chapter IV for use with

the prediction residual has not been considered in this thesis. It is

simple to implement and would minimize the need for modulators. Previous

authors have studied this for speech; however, the subject has not been

studied for the prediction residual [36] [37].

5.2.5 Prediction Residual and Noise

A study that would greatly benefit the speech coding area is to mask

the prediction residual with white noise. That is,

z(k) = ef(k) + v(k)

where ef(k) represents the discrete samples of the prediction residual

signal and v(k) represents the discrete damples of the white noise.

The enhancement of the pitch period markings would be of major impor-

tance in this study. Further, the synthesized signal-to-noise ratio per-

formance measurements would also be of interest. The speech waveform has

been examined in noise stripping environments; however, the prediction

residual in a noise environment has results that are promising [19] [58].

An aid to characterization of the signal would be to use the Laplacian or

Gamma distribution, as with the speech. However, these distributions are

questionable for the prediction residual since the waveform is different.

i . ... .. . - 4
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Determining the probability distribution of the prediction residual may

be a study in itself.

5.2.6 Modeling the Prediction Residual

The prediction residual in this thesis is obtained by inverse filter-

ing the speech signal. Under certain conditions, it is not easy to code

the inverse filter; however, if a model was determined that is similar to

the signal, it would be of benefit for synthesis. An extension of the

work in Chapter II would be to compare the speech and the prediction

residual. It would be necessary to identify the essential parameters

that can be derived from the residual signal, such as pitch, phase in fo0

formant characteristic and noise between pitch period pulses. The end

results would approximate an expression that compares with the actual

residual pulse. This in turn could be compared with Flanagan and Rosen-

berg's work [2] [12] [32].
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I. Articulation Index - A weighted fraction representing, for a given

speech channel and voice condition, the effective proportion of the

normal speech signal which is available to a listener for conveying

speech intelligibility. It is computed from acoustical measurements

or estimates, at the ear of a listener of the speech spectrum and of

the effective masking spectrum of any noise that may be present.

2. Allophone - A manifold acoustic variation of a phoneme.

3. Coding - The means by which an analog waveform is discretized then

further represented in one of the well-known methods, e.g., Pulse

Code Modulation.

4. Cognate - A complimentary pair of fricatives. One is voiced, the

other is unvoiced; however, the place of articulation is the same.

5. Consonant - Those speech sounds which are not exclusively voiced and

mouth-radiated. There are fricative, stop and nasal consonants.

6. Communication - The means by which any transmission, emmision or re-

ception of signs, usages or intelligence of any nature is conveyed.

7. Excitation Function - The representation of the glottis in the vocal

tract by mathematical modeling in the synthesis of voice.

8. Formant - The resonance component of a speech sound. Generally, it

is associated with the phonetic quality of a vowel.

9. Fricative - The speech sound produced by a noise excitation of the

vocal tracts. This noise is generated by turbulent air flow at some

,'int along the constriction in the vocal tract. If the vocal cords

operate with the noise, the fricative will be voiced; otherwise, it

is unvoiced.

10. Glide (liquid) - Those sounds characterized by gliding transition of
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the vocal tract and influenced by the context in which the sound

occurs, commonly referred to as semi-vowels.

11. Glottis - The orifice between the vocal cords.

12. Intelligibility - The perceptual effect of understanding speech

sounds.

13. Language - The set of principles mastered by the speaker in which

resides at his grasp an infinite set of sentences. It is a system

of human communication based on speech sounds used as arbitrary

symbols.

14. Nasal - The group of consonants made with complete closure of the

mouth making the radiation sounds come from the nostrils.

15. Phoneme - The basic speech sound element used which serves to keep

words apart.

16. Plosives (Stops) - Those speech sounds which begin with complete

closure of the lips. The lungs build up pressure behind the clo-

sure, suddenly release an explosion marking the voice onset time.

17. Pitch - The difference in the relative vibration frequency of the

human voice that contributes to the total meaning of speech, the

fundamental frequency.

18. Quality - The ability to identify the character of speech sounds.

19. Place of Articulation - The part of the vocal tract where constric-

tion occurs. Three places of articulation are: labial, alveolar,

palatal; i.e., front, middle, and back of the mouth.

20. Speech Perception - The ability of humans to discriminate and dif-

ferentiate speech sound with their over-learned senses.

21. Suprasegmentals - The features of stress, pitch, intonation, melody,

etc., that occurs simultaneously with speech sounds in an utterance.
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22. Transitional Cues - The loci of frequency determined by the place of

articulation connecting phonemes.

23. Unvoiced - Speech sounds that occur without the vocal cord source

operating.

24. Vocal Tract - The acoustic tube which is nonuniform in cross-sec-

tional area beginning with the lips and ending with the vocal cords.

For the adult male, it averages 1/ centimeters in length and varies

from 0 to 20 square centimeters in cross-section.

25. Voiced - Speech sounds that are produced by the vibratory action of

the vocal cords.

26. Voice Onset Time - The delay from complete closure of a plosive to

the beginning of voicing. Generally averages 25-30 milliseconds.

27. Vowel - Speech sounds produced exclusively by the vocal cord, i.e.,

voiced, excitation of the vocal tract.
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The flow graph in Figure 24 gives all the programs used in this

thesis. These programs were coded for the INTERDATA 70. Each of the

modules is discussed below.

B.1 DIGITIZ

This program is an implementation of analog-to-digital (A/D) con-

version. It actuates the equipment and the A/D converter which is a part

of the computer system. The input is from an analog tape recorder. The

output corresponds to the quantized signal with amplitudes of ±10 volts

peak-to-peak in steps of 20 millivolts. This data is stored on disk in

area BURGE.DAT. The samples are grouped in 16 records sequentially with

256 samples per record.

B.2 LOOK

This program operates on any data set. It was developed as an in-

formation tool for scanning the data. It has an option to have the out-

put on a CRT or on a line printer.

B.3 WINDOW

This routine uses a 256-point Hamming window, shifts by 64 points,

uses a 256-point window, and the process is continued to the end of the

file. The input is the sampled speech data, BURGE.DAT. It conveniently

informs the user that the sequence is being windowed. The output is

scaled, windowed data that is written in file WINDOW.DAT.
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B.4 AUTO

This program calculates the inverse filter coefficients, cross-

correlation coefficients, partial correlation coefficients, and auto

correlation coefficients. The input is the windowed speech data. A

sample of each of the coefficients is printed. They are written in the

file AUTO.DAT.

B.5 INVERS and LATTIC

These routines are in implementation of the lattice filter. The

input is the windowed speech data. The output is the error signal or

the prediction residual. This output is written in the file RESIDUAL.DAT

on the disk.

Routine LATTIC provides the user the option of a plot of each frame

for the input speech and the prediction residual. The user must also

enter the two character names of the sound for the frame desired.

B.6 FFTMGR

This program calculates the Fourier spectrum of the speech input.

It calculates the energy per frame, splits this into the predetermined

sub-bands for sub-band energy, and it computes the normalization factor

and the bit allocation. It uses as input the residual signal and out-

puts the spectrum, phase and bits. These are written in the files

SPECTM.DAT, PHAZ.DAT and BITS.DAT, respectively.

B.7 ENCODE

Routine ENCODE codes a signal based on bits allocated. It uses

uniform quantization using the adaptive strategy discussed in the main
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part of the thesis to determine the number of levels and rounds the in-

dividual samples to the nearest level. The input is the number of bits

and the sub-band signal. The coded signal is written in file CODE.DAT.

B.8 DECODE

This routine decodes the integer data in the file CODE.DAT. It

determines the largest code level and calculates the allocated bits from

this level. It also sets a maximum quantization level. This decoded

signal is written in the file SIGNAL.DAT.

B.9 SUMLPD

This routine computes the sub-band prediction residuals using the

digital bandpass filters, modulator, lowpass filters, and decimator.

The inputs are the signal spectrum and phase. The outputs are the deci-

mated sub-bands. These are written respectively in the files SBANDI.DAT,

SBAND2. DAT, SBAND3.DAT, and SBAND4.DAT.

B.lO RESULT

This routine uses the signal to compute signal-to-noise (SNR) ra-

tios. It uses as input the decoded signal and the residual signal. The

output is a normalized SNR and an average mean squared SNR. The user

has the option of producing a plot. If used, one must input the two-

character sound names. The data is written in the file SQNR.DAT.

B.11 SNRCAL

The routine calculates from any two 256-point data arrays the SNR.

The input is two arrays of length 256 or less number of points. The
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program outputs a mean-squared SNR, a root-mean-square (RMS) SNR and a

conventional (normalized) SNR.

B.12 PITCH

This routine estimates the fundamental frequency of a speech utter-

ance. The input is the speech array prediction residual signal and the

spectrum of the signal. The program outputs the pitch.
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ARTICULATION INDEX

The concept of the Articulation Index (AI) was advanced by French

and Steinberg [86]. It is defined as a number obtained from articulation

tests using nonsense syllables under the assumption that any narrow band

of speech frequencies of a given intensity in the absence of noise car-

ries a contribution to the total index, which is independent of the other

bands with which it is associated, and that the totals of all the bands

is the sum of the contributions of the separate bands [86]. It must be

proven that there is a unique function relating syllable or word articu-

lation to Al for any given articulation crew and choice of word list.

In determining Al under these conditions, there are essentially two par-

ameters of a linear communication system that can be varied: (a) the

level of the speech above the threshold of hearing, and (b) the frequency

response of the system. Here a linear system that is free from noise is

assumed.

A curve of Al versus frequency is included from French and Steinberg

[86] in Figure 32. The curve is derived from the syllable articulation

gain and frequency responses of speech waveforms [86]. The syllable

articulation is expressed as the percentage of syllables with which con-

sonant-vowel-consonant of meaningless monosyllables are perceived cor-

rectly.

Baranek [87] pointed out two important facts. First, extending the

frequency range of a communication system below 200 or above 6000 Hz

contributes almost nothing to the intelligibility of speech. Second,

__ _ __ _ __ _ I.'
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each frequency band shown in Table XXV makes a 5 percent contribution to

the Al, provided that the orthotelephonic gain of the system is optimal

(about +10 dB) and that there is no noise present.

TABLE XXV

FREQUENCY BANDS OF EQUAL CONTRIBUTION
TO ARTICULATION INDEX

Mid-Freq Mid-Freq
No. Edges of Band (Mean) No. Edges of Band (Mean)

1 200 - 300 270 11 1600 - 1830 1740
2 330 - 430 380 12 1830 - 2020 1920
3 430 - 560 490 13 2020 - 2240 2130
4 560 - 700 630 14 2240 - 2500 2370
5 700 - 840 770 15 2500 - 2820 2660
6 840 - 1000 920 16 2820 - 3200 3000
7 1000 - 1150 1070 17 3200 - 3650 3400
8 1150 - 1310 1230 18 3650 - 4250 3950
9 1310 - 1480 1400 19 4250 - 5050 4650
10 1480 - 1660 1570 20 5050 - 6100 5600

The orthotelephonic (OT) gain is defined by

OT Gain (Subjective) = 20 log (eo/Po) + 20 log (E2/e0 )

+ 20 log (P1/E2 ) (A.1)

where

P1  = free field pressure necessary to produce the same loudness

in the ear as was to produce by the earphone with voltage

E2 across.
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• o  = voltage produced by the microphone across the input re-

sistor of the amplifier by a voice which produces pressure

Po at a distance of one meter in a free field.

E2/eo  = voltage amplification of the amplifier.

OT Gain (Objective) = 20 log (eo/po) + 20 log R

+ 20 log (e2/eo ) + 20 log (Pe/e2) (A.2)

where

R = ratio of the pressure produced at the eardrum of a listener

by a source of sound to the pressure which would be produced

by the same source at the listener's head position if he were

removed from the field.

Pe = pressure produced at the eardrum of a listener by the ear-

phone with a voltage e2 across it; others are the same.

The AI obtained per frequency band in Table XXV is successively

added to arrive at the total Al.
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